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Abstract—Asset allocation constitutes one of the most crucial
and most challenging task in financial engineering. In many
allocation strategies, the estimation of large covariance or pre-
cision matrices from short time span multivariate observations
is a mandatory yet difficult step. In the present contribution,
a large selection of elementary to advanced estimation pro-
cedures for the covariance as well as for precision matrices,
are organized into classes of estimation principles, reviewed
and compared. To complement this overview, several additional
estimators are explicitly derived and studied theoretically. Rather
than estimation performance evaluated from synthetic simulated
data, performance of the estimation procedures are assessed
empirically by financial criteria (volatility, Sharpe ratio,. . . )
quantifying the quality of asset allocation in the mean-variance
framework. Performance are quantified by application to a large
set of about 250 European stock returns across the last 15 years,
up to August 2015. Several real-life scenarios are considered,
with different ratios of the estimation time span to the size
of the basket of candidate assets. This large scale comparative
study allows us to address issues such as the relative benefits and
difficulties of using direct estimates of the precision matrix over
the estimation of the covariance matrix. Also, we analyze the
impacts of realistic constraints, such as short sale restrictions.

Index Terms—Portfolio selection, asset allocation, covariance
matrix, precision matrix, multivariate estimation, factor, shrink-
age, sparsity.

I. INTRODUCTION

Optimal asset allocation. Optimal asset allocation, i.e., the
selection of a limited number of assets within a pre-selected
(large-size) basket for optimal performance, constitutes a cru-
cial stake in the finance industry [1], [6], [20]. Amongst the
numerous available strategies, the mean-variance framework
of Markowitz [37], [38] and in particular the global minimum
variance portfolio (GMVP), is commonly used for actual asset
allocation: Given a set of p risky securities, whose returns at
time t are denoted {rk(t), k = 1, . . . , p, t = 1, . . . , n}, the
GMVP approach amounts to estimating the vector of weights
{wk, k = 1, . . . , p}, that minimizes the overall standard
deviation (hereafter referred to as the volatility) of the portfolio
return:1

r(t) =

p∑
k=1

wk · rk(t). (1)

Without restriction on short-sales, i.e., weights wk can be
either positive or negative, the GMVP is obtained as the

1Given the prices Pk(t) of asset k at time t, the corresponding return reads:
rk(t) = (Pk(t+ 1)− Pk(t))/Pk(t).

solution to the following optimization program:

w∗ = argmin
w

w′Σw, s.t. 1′pw = 1, with 1′p = [1, . . . , 1]︸ ︷︷ ︸
p−times

,

(2)
where ·′ denote the transpose operator and Σ the (full-rank)
p× p covariance matrix of the asset returns. The well-known
closed-form solution to problem (2) involves the p×p precision
matrix, Π = Σ−1, of the asset returns (e.g., [1]):

w∗ = (1′pΠ 1p)
−1

Π 1p. (3)

This shows that the estimation of Σ, or more accurately of its
inverse Π, constitutes a crucial step for a successful imple-
mentation of asset allocation, as well-known and abundantly
documented [15], [19].

However the estimation of large covariance matrices is a
notoriously difficult task: First, while pointwise convergence
of usual covariance estimators is guaranteed under mild as-
sumptions, often met in real-world data, variance in estimation
implies significant uncertainties on eigenvalues and eigenvec-
tors; Second, large matrix inversion is a tedious, numerically
unstable task, notably for ill-conditioned matrices (as often
the case in practice, when the number of observations n is not
large compared with the number of assets p). These issues are
known to significantly impair the implementation of GMVP
strategies [39], to the point that they may underperform equally
weighted portfolio (EWP) strategies, that simply ignore co-
variance estimation and use only a diagonal identity matrix
instead (i.e., wk = 1/p, ∀k): For monthly return based US
stock market, it was estimated that GMVP requires sample
size n larger than 6, 000 months (500 years !) for a portfolio
with p = 50 assets, in order to outperform EWP. This leads
the authors of [15] to pessimistically conclude that there are
still many miles to go before the gains promised by optimal
portfolio choice can actually be realized out-of-sample2.
Related work. A large amount of research efforts has been
dedicated to overcoming such limitations. It was notably
reported that, compared with EWP or with GMVP based on
the sample covariance matrix Sn, the out-of-sample volatility
of GMVP can be significantly lowered by shrinking Sn [32],
while the details of the shrinkage themselves have little im-
pact [17]. However, despite reduced volatility, the benefits of

2In the finance literature and econometrics, out-of-sample refers to perfor-
mance computed on data that were not used for parameter estimation, tuning
or learning.
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shrinkage based estimates in terms of performance measured
by financial criteria such as the Sharpe ratio (i.e., the ratio of
Gain to the volatility) are still questioned (cf. e.g., [27]).

Along another line, one can surprisingly note that, in the last
decade, most research efforts (but for the noticeable exception
of [28]) were dedicated to improve the estimation of Σ, while
the key quantity is obviously Π. It is however well-known
that the inverse of Sn yields a poor estimate of the precision
matrix, notably when n ' p [40].

Further, restrictions on short-sales which amount to account
for the additional constraint wk ≥ 0,∀k in problem (2) were
reported to improve GMVP performance, essentially by acting
as a shrinkage of the estimated Σ, and thus to a better condi-
tioning of the effective covariance matrix [27]. The impact of
such additional constraints remains yet undocumented when a
direct estimate of Π is used.
Goals, contributions and outline. In this context, the overall
goals of the present contribution are to contribute to a large
size study of covariance/precision matrix estimation strategies
in asset allocation and to compare their performances. Notably,
it intends to quantify which strategy yields optimal GMVP
performance, as measured with financial metrics and in realis-
tic contexts (e.g., when n ' p). More precisely the following
issues will be addressed: i) Should one invert a covariance
estimate or prefer a direct estimate of the precision ? ii)
Which estimate of Σ, of Π should be preferred ? in what
context ? iii) How do short sale restrictions or other additional
financial constraints impact performances ? To achieve these
goals, the first originalities of the present contribution are
both to review and organize existing estimators into classes of
estimation principles (direct, factors, shrinkage and sparsity) as
well as to derive closed-form expressions for several reliable
estimators for Σ and Π that had never been made explicit so
far (cf. Section II). A second originality lies in performance
assessment: Performance will not be quantified in terms of
Mean-Squared-Error, or other classical signal processing es-
timation criteria, measured from average across Monte Carlo
simulations conducted on synthetic and controlled data, as this
would imply the recourse to a reliable multivariate statistical
model for risky assets, for which a consensus is far from
existing. Instead, performance will be evaluated using several
financial performance assessment metrics (portfolio volatility,
Sharpe ratio, asset turn over, Herfindal index, . . . ), computed
by applying the full collection of devised estimators to a very
large data set of actual risky assets, which constitute a relevant
basket that can be used in practice by investment firms: The
p = 244 largest capitalizations of the STOXX Europe 600
index, across more than 15 years, up to August 2015. Several
realistic situations will be explored: n � p, n ≥ p, n & p
and n ≤ p. Setting and results are reported and commented in
Section III, together with the impact of short sale restrictions
on not only the estimates of Σ but also on those of Π. Future
works and conclusions are envisaged in Section IV.

II. COVARIANCE AND PRECISION ESTIMATION STRATEGIES

This section presents the estimators for Σ and Π retained
in this study, organized into four classes (direct, factor based,

shrinkage based, sparsity based), and provides an overview of
their main properties. It also details original results for the
estimation of both the covariance and precision matrices.

A. Direct sample estimates

The sample covariance matrix estimator Sn (relabeled here
Σ̂(1) for consistency):

Σ̂(1) :=
1

n− 1

[
n∑
t=1

rt · r′t −
1

n

(
n∑
t=1

rt

)
·

(
n∑
t=1

r′t

)]
, (4)

where rt denotes the p-vector of asset returns on day t, is
certainly the simplest estimator one can consider. However, it
suffers from two main deficiencies. First, when the number of
observations n is less than the number of assets p, the sample
covariance matrix is not full rank, hence it is not invertible. In
such a case, the Moore-Penrose generalized inverse is usually
retained to estimate the precision matrix

Π̂(1) :=
[
Σ̂(1)

]+
, (5)

where ·+ denotes the generalized inverse [2]. Second, even if
the sample covariance matrix is full rank, its inverse only pro-
vides a biased estimator of the inverse population covariance
matrix.

Many simple, and sometimes naive but efficient, alternatives
have been proposed. Among many others, let us refer to the
replacement of the sample covariance matrix by a scalar – and
actually the identity – matrix

Σ̂(2) := Idp and Π̂(2) := Idp , (6)

in which case GMVP simplifies to EWP, or by the diagonal
matrix of the sample variances

Σ̂(3) := diag
(

Σ̂(1)
)

and Π̂(3) :=
[
Σ̂(3)

]−1

. (7)

Let us remark that the use of Σ̂(2) or Σ̂(3) yields necessarily
positive weights wk ≥ 0,∀k, leading de facto to a so-called
long-only strategy (no short sales).

The sample covariance matrix and its (generalized) inverse
will provide the benchmark strategy for the horse race in
section III.

B. Factor estimates

1) Factor principle: Alternatively, in order (i) to reduce the
noise in the sample covariance matrix, (ii) to get a full rank
estimate of the covariance matrix even when the number of
assets is larger than the number of observations and (iii) to get
a reliable estimate of the inverse covariance matrix, the factor
models can provide a versatile approach. The simplest case is
derived from the Sharpe market model [44] in which the return
on the market portfolio is assumed to be the single relevant
factor. More general models based on three or four factors can
provide better approximations to the actual covariance matrix
for stock returns [9], [21]. Alternatively, when the factors are
unknown or unobservable, an approximate factor structure can
be reconstructed from a principal component analysis or a
singular value analysis [10], [35].
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2) Exogenous factors: For simplicity we will consider the
single index market model as representative of this first class
of models:

rk(t) = αk + βk · rm(t) + εk(t), (8)

where rm(t) denotes the return on a market index representa-
tive of the class of assets under consideration, e.g. the STOXX
Europe 600 index in the present study, on day t. The vector
parameter α = {. . . , αk, . . . } and β = {. . . , βk, . . . } are
the p-vectors of intercepts and factor loadings while ε(t) =
{. . . , εk(t), . . . } is the p-vector of idiosyncratic residuals with
diagonal covariance matrix ∆. For simplicity, let us assume
iid normal observations. The covariance and precision matrices
read

Σ = ∆ + σ2
mββ

′ and Π = ∆−1 − ∆−1β · β′∆−1

1
σ2
m

+ β′∆−1β
, (9)

where σ2
m = Var rm,t.

One can obtain plug-in estimators by naive replacement of
the parameters β and ∆ by their Ordinary Least Square (OLS)
unbiased estimators. However, these plug-in estimators do not
result in unbiased estimators for Σ and Π.

Accounting for the independence of the OLS estimators of
β and ∆ under normality and denoting by σ̂2

m the unbiased
estimate of σ2

m, we get

E
[
σ̂2
mβ̂β̂

′
]

= σ2
mββ

′ +
1

n− 1
·∆ , (10)

which shows that the plug-in estimator of Σ exhibits a finite
sample bias equal to (n− 1)−1∆. A bias-corrected estimator
of the covariance matrix reads:

Σ̂(4) := σ̂2
mβ̂β̂

′ +
n− 2

n− 1
· ∆̂ . (11)

We can note that Σ̂(4) only differs from the plug-in estimator
by the multiplicative factor (n − 2)/(n − 1) which derives
from the fact that the entries of ∆̂ are χ2-distributed with
n − 2 degrees of freedom. Note also that, as a consequence,
this result generalizes to the case of a l-factor model by
replacement of the multiplicative factor (n − 2)/(n − 1) by
(n− l − 1)/(n− 1) in (11).

We can also propose an alternative estimator to the plug-in
estimator of the precision matrix. To correctly compute (3), it
is enough to obtain an estimator of Π up to a multiplicative
constant. Hence, we only need an unbiased estimator for the
numerator of Π:(

1 + σ2
m · β′∆−1β

)
·∆−1 − σ2

m ·∆−1β · β′∆−1 . (12)

As a consequence of the independence of the OLS estimators
of β and ∆ under normality, we get

E
[
σ̂2
m

(
β̂′∆̂−1β̂

)
∆̂−1 − σ̂2

m∆̂−1β̂β̂′∆̂−1
]

=(
n− 2

n− 4

)2

·

(
σ2
m

(
β′∆−1β

)
∆−1

− σ2
m∆−1ββ′∆−1 + p−1

n−1∆−1

)
(13)

while

E
[
σ̂2
m · β̂′∆̂−1β̂

]
=
n− 2

n− 4

[
σ2
m · β′∆−1β +

p

n− 1

]
. (14)

Hence a suitable estimator of the precision matrix reads:

Π̂(4) :=
n− 4

n− 2
· ∆̂−1 −

(
n−4
n−2

)2

σ̂2
m∆̂−1β̂β̂′∆̂−1 − ∆̂−1

n−1

1 + n−4
n−2 · σ̂2

mβ̂
′∆̂−1β̂ − p

n−1

.

(15)
In the limit n → ∞, with a fixed number p of assets, the
estimator converges toward the plug-in estimator. But, when
both n and p grow so that limn→∞ p(n)/n → γ > 0, in
difference to the case of the covariance matrix, the correction
in the denominator does not vanish and this estimator does
not converge to the plug-in estimator.

3) Endogenous factors: When the factors are unobservable,
one has to rely on the principal component analysis (PCA) or
the singular value decomposition (SVD) from which many
different estimators can be derived. We define two couples of
estimators.

For consistency with the previous approach, we consider(
Σ̂(5), Π̂(5)

)
whose definition follows that of

(
Σ̂(4), Π̂(4)

)
with the return on the market portfolio rm replaced by the
first SVD factor, extracted from the p×n matrix which stacks
the time series of the returns rk.

We further define Σ̂(6), obtained from Σ̂(4), using the two
first factors of the SVD. However, given that we are not
able to derive theoretically an improved estimator for the
precision matrix, involving more than one factor, Π̂(6) will
not be considered.

C. The shrinkage approach
1) Shrinkage principle: The shrinkage of the sample co-

variance matrix towards a target user supplied matrix M ,
amounts to replace Sn with the following linear combination:

Σ̂shrink = (1− ρ)Sn + ρM, (16)

where ρ results from the minimization of the quadratic loss
function, which achieves the best trade-off between the bias
and the variance of the resulting estimator:

L (ρ,M) = E
[
||Σ̂shrink − Σ||2

]
. (17)

This approach was originally introduced in [46] and provides
an optimal mix between the sample estimate of the covari-
ance/precision matrix and a target matrix. More recently, [32]
considered shrinkage toward a scalar matrix and toward the
covariance matrix implied by Sharpe’s market model while [3]
considered shrinking the sample covariance matrix toward the
covariance matrix derived from a latent factor model estimated
by principal component analysis3. All in all, [17] suggests
that the simplest approach to shrinkage provides the best
results. However the recent advances proposed in [11], [12]
show that better approximations of the covariance matrix can
be obtained on the basis of improved shrinkage parameters
in particular in the case where the input data are fat-tailed.
Alternatively, non-linear shrinkage methods either based on
the introduction of an upper limit for the condition number of
the estimated covariance matrix [48], [51] or on the Marcenko-
Pastur equation [36] seem to provide significant improvements
[31], [33].

3The shrinkage parameter for several classical models can be found in [43].
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2) Covariance matrix: The case of linear shrinkage is con-
sidered here only. We use the Oracle Approximating Shrinkage
(OAS) estimator introduced in [11] for the shrinkage toward
the identity matrix, whose performance are actually close to
those of the oracle shrinkage estimator whose implementation
requires the knowledge of the true Σ.

Lemma 1 (Chen et al. 2010, Theorem 3). Under the
assumption of iid normally distributed asset returns, given the
unbiased sample covariance matrix estimator Sn, the Oracle
Approximating Shrinkage estimator of the covariance matrix
toward the identify matrix is4

Σ̂(7) = ρ̂ · TrSn
p
· Idp + (1− ρ̂) · Sn, (18a)

ρ̂ = min


(

1− 2
p

)
Tr
(
S2
n

)
+ (TrSn)

2(
n− 2

p

)
·
[
Tr (S2

n)− (TrSn)2

p

] , 1
 . (18b)

When n → ∞, ρ̂ → 0 showing that Sn does not need im-
provement by shrinkage. Conversely, for small n, the leftmost
term within the curl-brackets in (18b) can be larger than one,
indicating that Sn is so noisy that it cannot be reliably used.

This result can be generalized to the shrinkage of the
covariance matrix toward a diagonal matrix, which, to the best
of our knowledge, is a new result:

Lemma 2. Under the assumption of lemma 1, the Oracle
Approximating Shrinkage estimator of the covariance matrix
toward a diagonal matrix is

Σ̂(8) = ρ̂ ·DiagSn + (1− ρ̂) · Sn, (19a)

ρ̂ = min



Tr
(
S2
n

)
+ (TrSn)

2

− 2Tr
[
(DiagSn)

2
]

n ·
(

Tr (S2
n)− Tr

[
(DiagSn)

2
]) , 1


. (19b)

Proof is detailed in Appendix A,
3) Precision matrix: The shrinkage approach can also be

successfully applied to the estimation of the precision matrix,
which may be more relevant than the application of the
shrinkage to the covariance matrix itself since the solution
to the mean-variance optimization program directly involves
this former one. When the sample covariance matrix is well-
conditioned, namely when the number of observations n is
larger than the number of assets p, [23] provides several ran-
dom shrinkage estimators that outperform the naive estimator
obtained by inversion of the sample covariance matrix. The
proposed strategy is, in essence, quite close to the strategy
applied in [32] for the shrinkage of the covariance matrix.
Now, when the sample covariance matrix is singular, so that
the previous method does not apply, [29] recently provides a
shrinkage method to improve on the classical Moore-Penrose
generalized inverse.

4This statement is the same as the one given in [11] with the replacement
n→ n− 1 to account for the fact the mean value is unknown in the present
case and for a recurrent typo in section III.C of [11] in which one has to
account for the replacement n+1−2

p
→ n+ 1− 2

p
and 1−2

p
→ 1− 2

p
.

In the context of portfolio optimization, the shrinkage of
the precision matrix has only been recently considered in [28]
which proposes a non-parametric cross-validation method for
the estimation of the shrinkage parameter. We depart from
this approach and propose two closed-form OAS estimator
for the precision matrix when the sample covariance matrix is
well-conditioned and its inverse admits a finite second order
moment, i.e., when n > p+ 4:

Lemma 3. Under the assumption of iid normally distributed
asset returns, given the unbiased sample precision matrix
estimator Pn = n−p−2

n−1 ·S
−1
n with finite second order moment,

the Oracle Approximating Shrinkage estimator of the precision
matrix toward the identify matrix is

Π̂(7) = ρ̂ · TrPn
p
· Id + (1− ρ̂) · Pn, (20a)

ρ̂ = min



n−p− 2
p (n−p−2)

n−p−1 · Tr
(
P 2
n

)
+

n−p−2− 2
p

n−p−1 · (TrPn)
2[

n−p− 2
p (n−p−2)

n−p−1 + n− p− 4
]

×
[
Tr
(
P 2
n

)
− (TrPn)2

p

]
, 1


.(20b)

Lemma 4. The Oracle Approximating Shrinkage estimator of
the precision matrix Π toward a diagonal matrix when n >
p+ 4 is

Π̂(8) = ρ̂ ·Diag (Pn) + (1− ρ̂) · Pn, (21a)

ρ̂ = min



2 · Tr
(

Diag (Pn)
2
)

+ n−p
n−p−1 · Tr

(
P 2
n

)
+ n−p−2

n−p−1 · (TrPn)
2(

n−p
n−p−1 + n− p− 4

)
×
[
Tr
(
P 2
n

)
− Tr

(
Diag (Pn)

2
)] , 1


.(21b)

The proof for these two lemma are postponed in Appendix
B.

The singular case is much more tedious to handle since the
sample covariance matrix does not admit a regular inverse. The
sample precision matrix is then usually estimated by help of
the Moore-Penrose generalized inverse whose statistic follows
the generalized inverse Wishart distribution [5]. Unfortunately,
to the best of our knowledge, the moments of this distribution
do not admit known closed-form expressions apart from the
case of cross-sectionally uncorrelated returns [13]. Hence the
derivation of the shrinkage estimators Π̂(7) and Π̂(8) for the
precision matrix in the singular case is left to future works.

D. The sparsity approach

1) Sparsity principle: The celebrated principle of parsi-
mony (Occam’s razor) has also long ago been summoned for
large covariance or precision matrices estimation [7], [8], [14],
[16], [22], [34]. Such a calling upon parsimony in that context
may be motivated from two different origins: Either from an
a priori sparse modeling choice or from estimation issues.
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Assuming a priori a sparse dependence model, i.e., the
fact that, beyond the diagonal terms, only a small (compared
to p(p − 1)) number of entries of covariance or precision
matrices theoretically differ from zero may first stem from
some theoretical or background knowledge on the system
governing the data at hand: Assets belonging to a given class
shall be related together while assets pertaining to different
classes are more likely to be independent. It then remains an
open and difficult question to decide whether such a relative
independence of classes of assets is better modeled with non
diagonal zeroed entries in the covariance or in the precision
matrix. When the covariance matrix is chosen sparse, its
corresponding inverse, the precision matrix, is usually not
sparse (and vice-versa). As a consequence, assuming that
either the covariance or the precision matrix is sparse amounts
to choosing from the very beginning between two different
structural models. Sparse covariance is equivalent, in a Gaus-
sian framework, to consider that the corresponding covariates
are independent. It is likely more relevant when one considers
assets traded on different markets with weak cross-market
correlations, thus yielding block-sparse covariance matrices.
Conversely, sparse precision corresponds, within that same
framework, to covariates that are conditionally independent.
It thus appears more naturally when assets returns can be
assumed to be linearly related, so that given the knowledge
of a subset, the remainders are uncorrelated. Beyond, these
theoretical considerations, the numerical experimentations and
analyses reported in Section III below can be read as elements
of answers, in the context of practical portfolio allocation
performance, to the challenging issue of deciding between a
sparse a priori imposed to covariance or precision.

The second category of reasons motivating sparsity in
dependence matrices stems from the well-known screening
effect that accompanies large covariance or precision matrix
estimation [25]: For large matrices, estimated from short
sample size, i.e., when n & p or even when n . p, estimation
performance for the non diagonal entries are such that it cannot
be decided whether small values correspond to actual non
zero correlations or to estimation fluctuations, and thus noise.
Therefore, small values should be discarded and large values
only are significantly estimated and should be further used.

In both cases – sparse modeling or estimation issues –
the practical challenge is to decide how many and which
non diagonal entries should be set to zero. There have been
on-going efforts to address sparse matrix estimation issues,
concentrating first on the precision matrix [7], [8], [14], [16],
[22], [34] and more recently on the covariance matrix [4], [42].

2) Precision matrix: In essence, the estimation of sparse
precision matrices relies on minimizing a cost function, con-
sisting of a balance between a data fidelity term associated to
the precision matrix and a penalty term aiming at promoting
sparsity. A state-of-the-art formulation of this problem is
now referred to as the Graphical Lasso [22]. It balances the
negative log-likelihood function, thus relying on the Graphical
Gaussian Model framework, and hence following the original
formulation due to [16], with an l1 penalization of the esti-

mated precision matrix:

Π̂(9) := argmin
Π

Tr(SnΠ)− log det Π + λ · ||Π||1, (22)

where λ denotes a penalization parameter to be selected.
Indeed, l1 penalization has been observed to act as an efficient
surrogate of l0 penalization, that explicitly counts non zero
entries, yet results in a non convex optimization problem.
Instead, estimating Π from Eq. (22) thus amounts to solving
a convex optimization problem, and practical solutions were
described in the literature, the two most popular relying on
the so-called path-wise coordinate descent [4] or Alternating
Direction Method of Multipliers algorithms [7]. In the present
contribution, use is made of this latter algorithm.

3) Covariance matrix: Sparsity can be imposed onto the
covariance matrix through the same formulation:

Σ̂(9) := argmin
Σ

Tr(SnΣ−1) + log det Σ + λ · ||Σ||1, (23)

which however consists of a non-convex problem and is hence
far more difficult to solve. It has however been observed that
the argument in Eq. (23) can actually be split into a concave
and a convex function, and that minimization can thus be
performed by a majorization-minimization algorithm [4].

III. EMPIRICAL RESULTS

A. Data set and performance assessment

1) Data Set: To review and compare performance in
GMVP strategies, the 9 different estimators for Σ and Π,
described and studied in Section II above, have been applied
to the daily returns of the p = 244 largest capitalizations of
the Euro STOXX600 index, for a period of 15 years, from
2000, May 1st to 2015, August 31st., i.e., for n = 4000
trading days, thus constituting a realistic and remarkable set
of 244× 4000 = 976000 observations.

2) Strategy set up: It is quite well-known that a crucial
issue in portfolio allocation lies in stock market time series
being highly non-stationary. This naturally raises the question
of assessing the typical stationarity time scale that can be
associated to a data set. This question is however ill-posed
and its correct formulation requires the explicit and detailed
formulation of the problem at stakes. In GMVP strategies, for
the allocation a time t, the estimation of Σ and Π is conducted
using a sliding of the past n days. The non-stationarity issue
thus translates into selecting the size n of the estimation
sliding window to achieve optimal performance. As such the
question needs to be further specified with respects to the size
of the covariance matrix p × p and the chosen performance
metrics. There has been several interesting attempts to tune
automatically and adaptively the optimal sliding window size
to the data, whose results yet remain difficult to interpret. The
focus is thus here on the comparisons of the performance of
the different estimators themselves, and not on the evaluation
of the adaptive tuning strategies. Therefore, to avoid ambi-
guities in comparisons, performance are hence measured for
different but pre-selected window sizes. These window sizes
are n = 500 � p and n = 375 ≥ p, where Sn is a full
rank matrix, and two sizes that are more difficult in terms
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of estimation, yet more realistic in terms of real-life portfolio
allocations, n = 250 & p, and even n = 125 ≤ p, where
Sn is highly singular. These choices correspond to 24, 18,
12 and 6 months of trading days respectively. Portfolios are
rebalanced once a week. Back-tests start after 500 days for all
window sizes n to ensure that they all have the same duration:
L = 3500 days. For ease of comparisons, transaction costs are
not accounted for.

3) Parameter tuning: The three first classes (direct, factor,
shrinkage) of proposed estimators do not imply any parameter
tuning. The Sparsity estimator class does require the tuning of
Parameter λ, that balances sparsity versus data fidelity. There
has been several interesting work investigating automated and
adaptive tunings of λ, e.g., [41]. Again to avoid blurring
in performance comparisons stemming from the behavior
of the tuning procedure itself, GMVP has been performed
systematically for a large collection of a priori fixed λ. Results
are reported for λ yielding the best GMVP performance only,
thus slightly favoring that class.

4) Constraints from short sale restrictions: For realistic
performance assessment in a real-world financial set up, we
run simulation both with and without short sale restrictions.
Forbidding short sells (also referred to as long only portfo-
lios) means that the weights wk are subjected to generalized
inequalities of the form wk ≥ 0.

w∗ = argmin
w

w′Σw, s.t. 1′pw = 1, and w ≥ 0, (24)

read as a generalized inequality over the nonnegative orthant.
5) Minimization procedures: The minimization procedures

have been designed by ourselves, both for the constrained and
unconstrained cases. The sparse precision estimator Π̂(9) in
Eq. 22 has been implemented after the procedure described
in [26]. We obtained the sparse covariance estimator Σ̂(9) in
Eq. 23 from [4], and the corresponding procedure has kindly
been made available to us by the authors.

6) Performance assessment: Estimation performance are
classically estimated in terms of Mean-Squared-Error (MSE),
which however requires that ground truth is known and thus
that estimation is applied to synthetic data, following an
a priori prescribed model. In stock market modeling, there
is no general consensus on the validity of specific models,
notably because of the stationarity issue discussed above.
Therefore, the relevance of performance assessed on synthetic
data remains always controversial with respect to their validity
when applied to real financial data. To overcome this difficulty,
it is chosen here to assess performance directly on financial
data and to compare efficiency of the proposed estimators
making use of well-accepted and practically meaningful finan-
cial performance assessment metrics: GMVP aims to minimize
the standard deviation (volatility, V) of the achieved portfolio,
this is hence a natural criterion for performance assessment ;
Sharpe ratio (S), that balances the gain (average return) and
the risk (average volatility), is also considered a crucial index
in portfolio management; Asset turn over (TO), defined as,

TO =
1

n− 1

n−1∑
t=1

p∑
k=1

|wk(t+ 1)− wk(t)|, (25)

is also critical as changes in allocation imply transaction costs
and further issues in actually achieving the allocation (liquid-
ity, order operations,. . . ), a low turnover is hence preferred
by practitioners ; The inverse of the Herfindal index (H−1),
defined as,

H−1 =

(
1

n

n∑
t=1

p∑
k=1

w2
k(t)

)−1

, (26)

is used to measure the portfolio diversification (that is the
larger H−1 the larger the number of assets the portfolio is
actually invested on). This is another important index for risk
assessment, because too concentrated portfolios are usually
regarded as lacking robustness and often result in very unstable
allocations which yield high (and, in practice, expensive)
turn-over rates. Out-of-sample (also referred to as ex-post)
performance only are reported.

B. Performance comparisons

Performance are reported in Tables I (n = 125), II (n =
250), III (n = 375) and IV (n = 500). In these tables, the tag
N/A is used to indicate when Precision estimators are either
meaningless or not available: This is the case for the direct
estimators for the Precision matrix that are identical to the
inverse of the estimators for the Covariance. This is also the
case, as explained in Section II-B, for the 2-factor Precision
estimator, theoretically not available. This is finally the case
in Table I, where n ≤ p, for Π̂(7) and Π̂(8) as their moments
do not possess known closed form expressions (cf. Section
II-C3 and Appendix B). Every second line complements the
empirical mean obtained by average over the L = 3500
for each given financial metrics by its empirical standard
deviation.

1) Within Σ̂: Tables I to IV show that performance, ir-
respective of the considered metrics, remain quite close for
estimators within a same class. They also show that shrinkage-
based and factor-based estimators outperform Direct estima-
tors (but Σ̂(1)) as well as Sparsity-based estimators both in
terms of Sharpe ratios and volatilities by a factor of about
2, for all n. Σ̂(1) is dominated in terms of volatility when
n ≤ p or n & p, but exhibits comparable performance for
large n, n ≥ p and n� p. It remains nevertheless dominated
in terms of Sharpe ratio. For n ≤ p, its very large standard
deviation shows that Σ̂(1) is not a robust and reliable estimator,
despite its being computed from the generalized inverse. It is
also worth noting that sparsity based estimators for Σ globally
perform poorly, and dramatically so when n ≤ p.

The dominating Shrinkage-based and factor-based estima-
tors are however not equivalent as, when n becomes large,
shrinkage reduces volatility while factor estimates favor the
Sharpe ratios. Furthermore, shrinkage yields more concen-
trated portfolios with higher turn-overs, compared to the
portfolios obtained from factor estimates. For both classes of
estimators, while diversification (H−1) does not depend on the
estimation window size n, but the turn-over decreases notably
when n ≥ p.

All together, the factor based estimators (notably the two
factor estimator Σ̂(6)) yield the most satisfactory asset al-
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TABLE I
GLOBAL MINIMUM VARIANCE PORTFOLIO – 125 DAYS

125 days - Long/Short

Σ Π

V S TO H−1 V S TO H−1

Direct

1 38.24 0.51 9.00 2.84 N/A N/A N/A N/A
(49.07) (0.79) (1508) (0.17)

2 19.65 0.67 0.00 244.00 N/A N/A N/A N/A
(0.49) (0.28) (0.00) (0.00)

3 15.71 0.67 0.04 164.60 N/A N/A N/A N/A
(0.42) (0.25) (0.02) (21.59)

Factor

4 9.31 1.19 0.19 29.78 9.71 1.15 0.22 26.44
(0.26) (0.28) (0.12) (15.71) (0.28) (0.28) (0.14) (15.22)

5 9.42 1.09 0.18 34.28 85.77 0.44 3.07 64.57
(0.26) (0.27) (0.11) (18.57) (17.97) (0.37) (16.80) (66.63)

6 8.56 1.11 0.25 29.09 N/A N/A N/A N/A
(0.25) (0.25) (0.16) (16.59)

Shrinkage

7 8.07 1.18 0.98 15.26 N/A N/A N/A N/A
(0.18) (0.26) (0.38) (8.93)

8 7.43 1.14 0.97 10.23 N/A N/A N/A N/A
(0.17) (0.25) (0.38) (5.72)

Sparsity

9 249.70 0.20 134.46 0.05 7.05 1.45 0.41 18.65
(31.50) (0.70) (98.48) (0.08) (0.19) (0.33) (0.16) (8.75)

125 days - Long Only

Direct

1 28.03 0.35 0.49 96.40 N/A N/A N/A N/A
(0.20) (0.25) (0.14) (5.83)

2 19.65 0.67 0.00 244.00 N/A N/A N/A N/A
(0.49) (0.26) (0.00) (0.00)

3 15.74 0.67 0.04 165.57 N/A N/A N/A N/A
(0.36) (0.28) (0.02) (21.48)

Factor

4 9.18 1.10 0.17 15.17 45.01 0.33 0.22 12.96
(0.25) (0.25) (0.11) (11.48) (1.18) (0.26) (0.16) (37.55)

5 9.33 1.02 0.17 17.16 35.30 0.29 0.12 80.67
(0.25) (0.27) (0.10) (14.59) (0.95) (0.29) (0.10) (53.95)

6 9.18 1.04 0.18 15.53 N/A N/A N/A N/A
(0.19) (0.26) (0.12) (13.25)

Shrinkage

7 9.21 1.18 0.22 16.54 N/A N/A N/A N/A
(0.22) (0.25) (0.12) (10.62)

8 9.10 1.08 0.23 11.50 N/A N/A N/A N/A
(0.22) (0.27) (0.13) (7.13)

Sparsity

9 12.41 0.85 0.30 68.88 8.96 1.16 0.19 13.88
(0.28) (0.26) (0.06) (20.15) (0.24) (0.28) (0.11) (8.67)

location overall performance when using covariance based
estimates.

2) Within Π̂: The first striking observation consists of
the tremendous performance of the sparsity approach when
applied to the estimation of the precision matrix: Volatility
is remarkably low while Sharpe ratio is quite large. These
performance are, however, achieved at the price of a higher
turn-over rate and a smaller diversification level compared with
the factor and shrinkage estimators. These observations hold
irrespective of the estimation window size n.

Second, it is important to note that the shrinkage estimators

TABLE II
GLOBAL MINIMUM VARIANCE PORTFOLIO – 250 DAYS

250 days - Long/Short

Σ Π

V S TO H−1 V S TO H−1

Direct

1 82.35 -0.02 48.42 0.15 N/A N/A N/A N/A
(8.75) (0.40) (33.90) (0.13)

2 19.65 0.67 0.00 244.00 N/A N/A N/A N/A
(0.41) (0.28) (0.00) (0.00)

3 16.15 0.67 0.02 172.82 N/A N/A N/A N/A
(0.37) (0.27) (0.01) (17.92)

Factor

4 10.02 1.18 0.11 28.24 10.30 1.16 0.11 26.47
(0.27) (0.28) (0.07) (12.70) (0.25) (0.26) (0.08) (12.52)

5 10.00 1.11 0.10 32.59 10.09 1.10 0.10 33.00
(0.31) (0.24) (0.07) (15.06) (0.28) (0.24) (0.07) (14.59)

6 9.05 1.22 0.15 26.20 N/A N/A N/A N/A
(0.23) (0.26) (0.12) (10.77)

Shrinkage

7 8.63 0.91 1.12 8.12 19.62 0.62 0.26 223.66
(0.20) (0.31) (0.47) (4.32) (0.51) (0.30) (0.40) (45.78)

8 8.15 0.85 1.06 6.64 18.39 0.56 0.74 87.94
(0.21) (0.26) (0.43) (3.28) (0.51) (0.26) (0.30) (25.69)

Sparsity

9 16.15 0.67 0.02 172.82 7.16 1.57 0.22 19.36
(0.38) (0.23) (0.01) (17.92) (0.16) (0.26) (0.11) (7.96)

250 days - Long Only

Direct

1 9.44 1.13 0.21 15.10 N/A N/A N/A N/A
(0.20) (0.25) (0.09) (5.02)

2 19.65 0.67 0.00 244.00 N/A N/A N/A N/A
(0.41) (0.28) (0.00) (0.00)

3 16.18 0.67 0.02 173.70 N/A N/A N/A N/A
(0.40) (0.25) (0.01) (17.87)

Factor

4 9.25 1.21 0.10 14.09 15.14 0.86 0.14 2.96
(0.25) (0.25) (0.07) (8.09) (0.67) (0.26) (0.17) (3.18)

5 9.46 1.14 0.10 15.74 9.94 1.07 0.10 14.85
(0.25) (0.26) (0.06) (10.07) (0.22) (0.28) (0.07) (11.78)

6 9.23 1.18 0.10 13.87 N/A N/A N/A N/A
(0.26) (0.23) (0.08) (7.51)

Shrinkage

7 9.21 1.20 0.13 13.08 19.66 0.61 0.09 239.25
(0.23) (0.28) (0.08) (6.32) (0.51) (0.26) (0.11) (13.10)

8 9.18 1.15 0.13 11.08 18.51 0.55 0.60 104.46
(0.22) (0.23) (0.08) (5.42) (0.46) (0.24) (0.14) (24.00)

Sparsity

9 16.18 0.67 0.02 173.70 9.13 1.23 0.10 14.40
(0.41) (0.23) (0.01) (17.87) (0.24) (0.27) (0.07) (7.27)

achieve very poor asset allocation performance when applied
to the precision matrix. Factor based estimates display decent
performance, but are however clearly and significantly outper-
formed by the sparsity-based estimators.

3) Impact of short sale restrictions: It is first striking to
note the significant improvement of the performance of the
sample covariance estimator Σ̂(1) in the presence of short sale
restrictions. It achieves levels of volatility and Sharpe ratios
at par with the best estimators as soon as n & p. Even in the
singular case n = 125, the volatility of the optimal portfolio
is much lower than in the absence of short-sale restrictions.
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TABLE III
GLOBAL MINIMUM VARIANCE PORTFOLIO – 375 DAYS

375 days - Long/Short

Σ Π

V S TO H−1 V S TO H−1

Direct

1 10.42 0.62 1.63 3.39 N/A N/A N/A N/A
(0.26) (0.26) (0.58) (1.66)

2 19.65 0.67 0.00 244.00 N/A N/A N/A N/A
(0.51) (0.26) (0.00) (0.00)

3 16.32 0.73 0.01 176.68 N/A N/A N/A N/A
(0.37) (0.25) (0.01) (16.84)

Factor

4 10.52 1.20 0.08 27.50 10.75 1.18 0.08 26.29
(0.30) (0.30) (0.06) (9.99) (0.31) (0.25) (0.06) (9.95)

5 10.38 1.15 0.07 31.74 10.60 1.08 0.05 56.61
(0.31) (0.28) (0.05) (11.19) (0.28) (0.26) (0.04) (26.35)

6 9.49 1.35 0.11 25.38 N/A N/A N/A N/A
(0.25) (0.28) (0.09) (8.91)

Shrinkage

7 8.70 0.96 0.86 7.19 19.22 0.68 0.04 230.12
(0.20) (0.29) (0.35) (3.46) (0.48) (0.26) (0.02) (8.50)

8 8.30 0.96 0.82 6.48 18.06 0.60 0.04 145.92
(0.19) (0.27) (0.32) (2.94) (0.39) (0.26) (0.01) (9.62)

Sparsity

9 16.32 0.73 0.01 176.68 7.44 1.64 0.15 20.30
(0.38) (0.30) (0.01) (16.84) (0.18) (0.29) (0.09) (7.32)

375 days - Long Only

Direct

1 9.20 1.21 0.09 10.83 N/A N/A N/A N/A
(0.23) (0.27) (0.06) (4.27)

2 19.65 0.67 0.00 244.00 N/A N/A N/A N/A
(0.43) (0.28) (0.00) (0.00)

3 16.35 0.73 0.01 177.47 N/A N/A N/A N/A
(0.37) (0.25) (0.01) (16.77)

Factor

4 9.30 1.26 0.07 13.85 9.74 1.21 0.08 7.39
(0.24) (0.26) (0.05) (5.48) (0.23) (0.26) (0.06) (3.30)

5 9.53 1.19 0.07 15.33 11.12 1.05 0.04 58.34
(0.24) (0.27) (0.05) (6.14) (0.30) (0.24) (0.03) (31.11)

6 9.29 1.25 0.07 13.56 N/A N/A N/A N/A
(0.22) (0.28) (0.06) (4.93)

Shrinkage

7 9.22 1.23 0.09 12.33 19.22 0.68 0.04 230.91
(0.20) (0.26) (0.06) (4.71) (0.46) (0.27) (0.01) (7.31)

8 9.20 1.21 0.09 11.20 18.08 0.60 0.04 147.30
(0.24) (0.27) (0.06) (4.44) (0.47) (0.28) (0.01) (8.93)

Sparsity

9 16.35 0.73 0.01 177.47 9.24 1.31 0.07 15.15
(0.37) (0.24) (0.01) (16.77) (0.23) (0.28) (0.05) (5.89)

In this respect, the results obtained in this study are perfectly
in line with those reported in [27], which concluded that the
introduction of constraints improves the optimization process
when the sample covariance matrix is ill-conditioned.

Second, the differences in performance between the factor
and shrinkage based estimators for the covariance matrix,
which were observed in the absence of short sale restrictions
are essentially smoothed out by the introduction of such
constraints: Specifically, the performance in terms of volatility
generally improve for the factor estimates while they slightly
deteriorate for the shrinkage ones. The Sharpe ratios almost

TABLE IV
GLOBAL MINIMUM VARIANCE PORTFOLIO – 500 DAYS

500 days - Long/Short

Σ Π

V S TO H−1 V S TO H−1

Direct

1 9.12 0.72 0.88 5.06 N/A N/A N/A N/A
(0.23) (0.27) (0.35) (2.30)

2 19.65 0.67 0.00 244.00 N/A N/A N/A N/A
(0.44) (0.25) (0.00) (0.00)

3 16.62 0.68 0.01 179.29 N/A N/A N/A N/A
(0.47) (0.28) (0.01) (15.69)

Factor

4 10.91 1.13 0.06 27.40 11.10 1.12 0.06 26.49
(0.31) (0.25) (0.05) (9.03) (0.33) (0.25) (0.05) (9.03)

5 10.72 1.10 0.06 31.71 11.08 0.96 0.04 65.18
(0.31) (0.27) (0.05) (9.86) (0.30) (0.27) (0.03) (30.59)

6 9.85 1.34 0.08 25.69 N/A N/A N/A N/A
(0.31) (0.28) (0.07) (8.42)

Shrinkage

7 8.55 0.89 0.65 7.43 19.06 0.65 0.04 219.21
(0.22) (0.27) (0.28) (3.32) (0.45) (0.29) (0.02) (13.06)

8 8.25 0.94 0.63 6.98 18.11 0.57 0.03 146.69
(0.18) (0.26) (0.26) (2.95) (0.48) (0.29) (0.01) (8.03)

Sparsity

9 16.62 0.68 0.01 179.29 7.74 1.57 0.12 21.27
(0.45) (0.26) (0.01) (15.69) (0.18) (0.31) (0.07) (7.23)

500 days - Long Only

Direct

1 9.37 1.13 0.07 11.11 N/A N/A N/A N/A
(0.22) (0.30) (0.05) (3.79)

2 19.65 0.67 0.00 244.00 N/A N/A N/A N/A
(0.46) (0.29) (0.00) (0.00)

3 16.64 0.68 0.01 180.05 N/A N/A N/A N/A
(0.40) (0.26) (0.01) (15.62)

Factor

4 9.50 1.20 0.06 13.95 9.61 1.15 0.06 9.22
(0.21) (0.25) (0.04) (4.64) (0.22) (0.23) (0.05) (3.48)

5 9.71 1.15 0.06 15.49 11.86 0.94 0.03 69.28
(0.25) (0.26) (0.04) (5.13) (0.31) (0.28) (0.02) (33.62)

6 9.49 1.18 0.06 13.74 N/A N/A N/A N/A
(0.27) (0.28) (0.05) (4.25)

Shrinkage

7 9.40 1.15 0.07 12.12 19.06 0.65 0.04 220.95
(0.20) (0.25) (0.05) (4.05) (0.42) (0.27) (0.01) (11.50)

8 9.38 1.13 0.07 11.38 18.13 0.57 0.03 148.02
(0.23) (0.31) (0.05) (3.89) (0.47) (0.25) (0.01) (7.42)

Sparsity

9 16.64 0.68 0.01 180.05 9.50 1.26 0.05 15.88
(0.43) (0.29) (0.01) (15.62) (0.22) (0.26) (0.04) (5.52)

never decrease; To the contrary, they increase for shrinkage es-
timators and reach the level achieved by the factor estimators.
The turn-over and diversification also improve.

Finally, this regularization effect by short sale restrictions
also operates for precision based asset allocation as, while
still dominant, the sparsity based estimators outperform less
significantly the factor based ones. Interestingly, when n ≤ p,
the sparsity based precision matrix estimator is the only one
displaying satisfactory performance.

Elaborating on discussions in [27], the regularization effect
induced by short sale restrictions can be understood as follows.
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In the absence of short sale restrictions, Solution 3 to Problem
2 can be obtained via a classical Lagrangian formulation,
L(w, λ) = w′Σw + λ

(
1′pw − 1

)
, (with λ a Lagrange mul-

tiplier), whose resolution is straightforward, yielding:

2Σw + λ · 1p = 0.

In the presence of further constraints induced by short sale
restrictions, the Lagrangian formulation becomes L(w, λ, ν) =
w′Σw + λ

(
1′pw − 1

)
− ν′w, (with λ and ν two Lagrange

multipliers). Deriving the Karush-Kuhn-Tucker conditions of
optimality yields

2

[
Σ + Diag(ν)− 1

2
·
(
1pν
′ + ν1′p

)]
w + λ · 1p = 0 ,

which, compared to the unconstrained solution, reads the same
but for the covariance matrix Σ being replaced by a shrinked
effective surrogate, Σ+Diag(ν)− 1

2 ·
(
1pν
′ + ν1′p

)
. In nature,

constraints act as a shrinkage leading to smaller effective
correlations, thus limiting the need and impacts of further
improvements in covariance or precision estimation.

4) Σ̂ or Π̂ ? : Factor and Shrinkage are the dominant
classes for Σ̂, while Sparsity and (to a lesser extent) Factor
dominates for Π̂, suggesting a generic behavior and robustness
in the Factor approach.

While the shrinkage approach performs well when applied
to the covariance matrix, it shows rather poor performance
when applied to the precision matrix. This likely stems from
the choice made for the target matrix in this case. Indeed
considering, e.g., the shrinkage toward a diagonal matrix, the
initial step consisted in retaining the diagonal of the sample
precision matrix Pn as target, rather than the inverse of the
diagonal of the sample covariance matrix: The inversion of
Sn to obtain Pn already incorporates a significant amount of
estimation noise at the initial step of the procedure.

The sparsity principle, applied to the covariance matrix
performs rather poorly, while it yields the best performance
when applied to the precision matrix. This can likely be
explained by the structure of dataset studied here, which
consists in shares from large capitalization European firms,
that is in homogeneous assets, which, according to financial
theory, are sensitive to a small number of common economic
factors. They hence show little partial correlation and thus a
sparse precision matrix.

IV. CONCLUSIONS AND PERSPECTIVES

We have conducted an in-depth study of the relative perfor-
mance of different estimation strategies of the GMVP based on
the inversion of the estimated covariance matrix or the direct
estimation of the precision matrix.

All together, the results reported here tend to show that
factor covariance-based or sparsity precision-based asset al-
location are on average globally equivalent, with however
a slight yet clear advantage for this later class in volatility
and Sharpe ratio, at the price of higher turnover and lower
diversification. Notably for small n, n ≤ p, sparsity precision-
based asset allocations degrade in performance far less than
other strategies and appear as the only viable option. This

may stem from the fact that short estimation windows avoid
estimation blurring by data non-stationarity, while sparsity
permits to maintain a sufficient quality for risk assessment.

We think that these empirical results are of interest both
from academic and professional points of view in so far
as they pave the way toward the development of new esti-
mation methods for optimal portfolio weights in the mean-
variance framework and yield new questions regarding the
informational content of the sample covariance and precision
matrices. Notably, the latent factors approach, which is, to a
large extend, related to the so-called random matrix theory
introduced in [49], has recently been brought back to the
front of the scene in [30]. It extends the factor approach
to account for the fact that the actual number of factors is
generally unknown. The idea consists in the identification
of the significant eigenvalues and the eigenvectors of the
covariance matrix, a notoriously difficult problem as soon
as the ratio p/n of the number of assets to the number of
observations is not small [1], [18], [24], [47]. This is under
current investigation.

APPENDIX A
SHRINKAGE OF THE COVARIANCE MATRIX

In order to prove lemma 2, we follow [11]. We are looking
for the parameters ρ and ∆, where ∆ is a p-dimensional
diagonal matrix, which minimize the quadratic loss function

L(ν, ρ) = E
[
||ρ∆ + (1− ρ)Sn − Σ||2

]
(27)

where || · || denotes the Frobenius norm while Sn denotes the
unbiased sample covariance matrix estimate from n iid random
vectors of Gaussian assets returns with covariance matrix Σ.

The minimization of the quadratic loss function (27) with
respect to ∆ yields

∆ = DiagΣ, (28)

i.e., ∆ only retains the diagonal terms of the covariance matrix
Σ, that will be estimated by

∆̂ = DiagSn. (29)

After substitution in (27), the minimization with respect to ρ
leads to

ρ = 1−
Tr
(
Σ2
)
− Tr

[
(DiagΣ)

2
]

E [Tr (S2
n)]− E

[
Tr
(

(DiagSn)
2
)] . (30)

Notice that, up to now, this derivation is totally free from the
distributional properties of the sample matrix Sn apart from
the absence of bias.

Let us now use the fact that the sample covariance matrix
follows a Wishart distribution (n − 1) · Sn ∼ Wp (n− 1,Σ),
so that [40]

Cov
(

(Sn)ij , (Sn)kl

)
=

1

n− 1

(
Σik · Σjl

+ Σil · Σjk

)
. (31)

As a consequence

E
[
Tr
(
S2
n

)]
=

n

n− 1
Tr
(
Σ2
)

+
1

n− 1
(Tr Σ)

2
, (32)
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and

E
[
Tr
(

(DiagSn)
2
)]

=
n+ 1

n− 1
Tr
[
(DiagΣ)

2
]
. (33)

Notice that these relations can straightforwardly be obtained
by application of the Stein-Haff identity. By substitution of
equations (32) and (33) in (30), we obtain the oracle shrinkage
estimator

ρ =
Tr
(
Σ2
)

+ (Tr Σ)
2 − 2Tr

[
(DiagΣ)

2
]

nTr (Σ2) + (Tr Σ)
2 − (n+ 1)Tr

[
(DiagΣ)

2
] . (34)

In order to derive an estimator of ρ, we follow the line of
[11] and introduce the Oracle Approximating Shrinkage (OAS)
estimator as the limit of the iterative process

Σ̂j = ρ̂j ·DiagSn + (1− ρ̂j) · Sn, (35)

and

ρ̂j+1 =

Tr
(

Σ̂j · Sn
)

+
(

Tr Σ̂j

)2

− 2Tr

[(
DiagΣ̂j

)2
]

nTr
(

Σ̂j · Sn
)

+
(

Tr Σ̂j

)2

− (n+ 1)Tr

[(
DiagΣ̂j

)2
] .

(36)
By substitution of (35) into (36) we get

ρj+1 =
1− φn · ρj

1 + (n− 1) · φn − nφn · ρj
, (37)

with

φn =
Tr
(
S2
n

)
− Tr

[
(DiagSn)

2
]

Tr (S2
n) + (TrSn)

2 − 2Tr
[
(DiagSn)

2
] , (38)

and 0 ≤ φn ≤ 1 by construction. Taking the limit as j →∞
we obtain the result stated in Lemma 2.

APPENDIX B
SHRINKAGE OF THE PRECISION MATRIX

As for the shrinkage estimator of the precision matrix
toward identity, the quadratic loss function becomes

L(ν, ρ) = E
[
||ρνId+ (1− ρ)Pn −Π||2

]
, (39)

where Π = Σ−1 and Pn is the unbiased sample precision
matrix obtained by inversion of the sample covariance matrix
Sn if n > p or is given by the Moore-Penrose generalized
inverse if n ≤ p. The minimization with respect to ν yields

ν̂ =
1

p
TrPn . (40)

As a consequence, by substitution in (39) and minimization
with respect to ρ we get

ρ =
E
[
Tr
(
P 2
n

)]
− Tr

(
Π2
)
− 1

pVar (TrPn)

E [Tr (P 2
n)]− 1

p (Tr Π)
2 − 1

pVar (TrPn)
. (41)

In the case n > p, the inverse of the sample covariance ma-
trix exists and the unbiased sample estimator of the precision
matrix is (provided that n > p+ 2)

Pn =
n− p− 2

n− 1
· S−1

n (42)

since (n−p−2)−1·Pn = ((n− 1) · Sn)
−1 ∼ W−1

p (n− 1,Π),
where W−1 is the inverse Wishart distribution.

From [45], we know that

Cov
(

(Pn)ij , (Pn)kl

)
=

2 ·Πij ·Πkl + (n− p− 2) (Πik ·Πjl + Πil ·Πjk)

(n− p− 1)(n− p− 4)
,

(43)

provided that n > p+ 4. Hence

E
[
Tr
(
P 2
n

)]
=

(
n− p

(n− p− 1)(n− p− 4)
+ 1

)
Tr
(
Π2
)

+
n− p− 2

(n− p− 1)(n− p− 4)
(Tr Π)

2
, (44)

and

Var (TrPn) = 2 ·
(Tr Π)

2
+ (n− p− 2) · Tr

(
Π2
)

(n− p− 1)(n− p− 4)
. (45)

Thus, the oracle shrinkage parameter is

ρ =

n−p− 2
p (n−p−2)

(n−p−1)(n−p−4) · Tr
(
Π2
)

+
n−p−2− 2

p

(n−p−1)(n−p−4) · (Tr Π)
2[

1 +
n−p− 2

p (n−p−2)

(n−p−1)(n−p−4)

]
Tr
(
Π2
)

+
[

n−p−2− 2
p

(n−p−1)(n−p−4) −
1
p

]
(Tr Π)

2

. (46)

As previously, we obtain the OAS estimator as the limit of the
iterative process

Π̂j = ρ̂j ·
1

p
TrPn · Id+ (1− ρ̂j) · Pn, (47)

and

ρ̂j+1 =

[
n− p− 2

p (n− p− 2)
]

Tr
(

Π̂jPn

)
+
(
n− p− 2− 2

p

)(
Tr Π̂j

)2

[
n− p− 2

p (n− p− 2)

+ (n− p− 1)(n− p− 4)

]
Tr
(

Π̂jPn

)
+

[
n− p− 2− 2

p

− 1
p (n− p− 1)(n− p− 4)

](
Tr Π̂j

)2

.

(48)
The limit as j → ∞ provides the result stated in Lemma 3.
The proof of lemma 4 follows exactly the same line; it is
omitted.
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