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Positionning of the paper

This paper relies on [Perchet et al., 2016] and [Perchet et al., 2014], it deals with Controlling of the ex-post
volatility of a portfolio.

I It exposes clearly a framework to implement and backtest such Target Volatility Strategies ;

I It is largely model-driven and relies on Monte-Carlo Simulations when it is about in depth investigations;

I And uses historical data to comfort obtained conclusions.

Moreover, it explores the added-value of Factor-Driven Model of Risk, across different asset classes (Equities,
Commodities, FX, Bonds).
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Main Principle of the Proposed Approach

Adjust future volatility of the portfolio thanks to a repartition of allocation between the risky asset and cash, using
today information

I Potential gain stems from any relationship between returns and risks of the underlying assets;

I If returns are independent from anything else you can nevertheless gain on any risk-driven measure (like
the Sharpe Ratio);

I Gains can be lost if you ex-ante estimates are not good enough.
Mainly if the volatility you estimate today (and uses into your optimization) is not close enough to the
realized one tomorrow.
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Theoretical Aspects: What Did You Expect?
Main Findings

Authors go through a collection of modelled effects:

I Constant expected returns (for simulations), or two regimes of expected returns (for historical data);

I Volatility clustering (their α parameter) and volatility persistence (their β parameter); α+ β ' 100%;

I Gaussian or Fat Tails for the innovations (not predictable part of the returns) and / or negative
correlation between returns and volatility (intense returns linked to low volatility –GJR-Garch–; this is not
the low-volatility anomaly [Ciliberti et al., 2015]; nor an increase of correlations of assets during market
crashes).

As expected controlling the volatility has an impact on risk-driven measures, like the Sharpe Ratio (you try to
decrease its denominator).
Nevertheless you face a Frequency Issue: if the volatility changes each year and you use the yearly volatility to
allocate for next year... You will never do what you think.
—
I have a technical reserve about SR for regime switching contexts, they do not average or change scale easily, cf. [Lo, 2002].
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Empirical Aspects: Improvements
Main Findings

When you try to control a quantity ex-ante (here the volatility), It is better to have good estimates .

I On presented Tables, results seem to improve (rebalancing frequency?);

I Forecasting volatility is of paramount importance: remember volatility is rough [Gatheral et al., 2014]. As
a rule of thumb: to predict volatility for the next year, you need to use one past year of data.

I Authors choose to model assets using a Markov chain regime switching model with two regimes. What if
you use only one regime?

Remarks:

I The ex-post volatility seems to be always larger than the ex-ante target. It is the curse of over-estimating
future risks explored for multi-dimensional portfolios? cf. [Laloux et al., 1999].

I In any case, if it is about running a numerical optimization, I would recommend to
target a quantile of volatility (i.e. a maximum of volatility), and not an average.
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Towards Risk Budgeting thanks to Factor Allocation

Authors compare the target volatility portfolios across asset classes and note it works better with risky
assets.
Moreover, they use a Factor Decomposition of each asset class (Momentum vs. Values) to control the risk on
each factor

I Reminder: Factors have a (good) mix of risk–return (compared to Sectors, for instance, cf.
[Briere and Szafarz, 2015]);

I It is on the path to Risk Budgeting : You allocate a risk budget per factor, cf. [Roncalli, 2014];
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A Methodological Perspective

It is always difficult to organize a dialog between models, data and simulations:

I Simulations , i.e. on “fake data”, generated by Monte-Carlo (MC) simulations according to the stated
model, are good to check you are going into the wanted directions.

I Backtests , i.e. on historical data (less data than for MC simulations) are very important to account for
effects that are not in the model (mainly the i.i.d. assumptions).

I Stress-tests are very interesting too: what about the robustness of your methodology to other
modelling assumptions (use MC generated by other models)?, or what about looking at other metrics?
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As a Conclusion to This Very Interesting Paper

I Ex-ante risk control is important and useful, hence I like a lot this Target Volatility Strategy;

I Especially for metrics involving risk ;

I And more when returns and risks are correlated a nice way (for instance volatility increases if returns are
down), but you need to react at the proper speed.

I Factors are good candidates to drive such risk control methodology (remember Richard Roll call them
“risk drivers” [Pukthuanthong and Roll, 2014]);

I Rebalancing frequency is not a detail ; it has to dialog well with your estimates (volatility if rough), and
with the rhythm of the relationship between returns and risk.
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