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Abstract

We study hedge fund liquidity management in the presence of liquidity risks on the

asset and liability sides. We formulate a two-period model where a single fund has

always access to a liquid asset and can invest in an illiquid asset which pays o� only

at the end of period two. Funding liquidity risk takes the form of a random out�ow

originating from clients in period one. The fund su�ers from a random haircut on

the illiquid asset's secondary market to cover its out�ow. We solve the allocation

problem of the fund and �nd its optimal allocation between liquid and illiquid assets.

We show that the liquidation probability and the portfolio composition of the fund

are revealing about the market liquidity and funding liquidity, respectively. Gates,

as a device that limits the out�ows experienced by the fund, helps it reduce its

liquidation risk and harvest liquidity premia.
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1 Introduction

Hedge fund managers select investment opportunities for their clients to generate the best

possible performance. One such way to chase performance is to target assets that su�er

from illiquidity, that is assets that are relatively cheaper because they are harder to resell

on a secondary market before their cash�ows are realized. While it may seem optimal

for fund managers to fully invest into these assets to capture the illiquidity premium

and o�er high returns to their clients, they rarely implement it in practice: in the few

cases where funds o�er transparency on their portfolios, a signi�cant share of assets under

management is invested in cash or in liquid assets with lower expected returns. One of two

things can prevent the manager to capture the liquidity premium: either agency problems

are diverting her to maximize their clients' returns, or her portfolio achieves optimal risk

management given the remaining of the fund's balance sheet, beyond the asset side. Since

most funds are open-ended, thereby allowing clients to withdraw their capital on a short

horizon2, the latter explanation seems to be of �rst order, such that the fund is actively

managing liquidity risks on both the asset and liability sides. Indeed, failure to reimburse

clients triggers the liquidation of the fund, an event that has been understudied in the

hedge fund asset pricing literature. Conversely, empirical papers have shown that funds

invested in illiquid assets capture a signi�cant premium, leaving aside the idea that the

liquidity exposure is endogenous to the potential liquidity mismatch between the fund's

asset and liability sides, potentially underestimating the liquidity premium. The funds

that are naturally more exposed to large funding and/or market liquidity shocks through

high discretionary liquidity restrictions (DLR) for instance will endogenously adjust their

portfolios to avoid liquidation.

This paper provides a framework to understand the trade-o�s of a fund manager based

on the liquidity characteristics of his portfolio (assets) and his investors (liability).3 We

formulate a two-period model where the fund manager is endowed with one unit of cash

that she can invest at time zero in either a zero-interest liquid asset (cash henceforth), or

in an illiquid asset that generates a positive deterministic return at period two. In our

model, liquidity risks are subordinated. The primary risk faced by the fund is that clients

withdraw their assets under management at period 1, forcing the fund to raise cash on

the asset side to �nance the out�ow. If the fund's already available cash is not su�cient

to cover the out�ow, it can start selling its illiquid asset on a secondary market, where

the illiquidity is represented by a random haircut. The manager is forced to liquidate the

2Liquid hedge funds are particularly exposed to this risk as these o�er daily liquidity while they
continue to signi�cantly invest in illiquid assets to harvest the liquidity premium.

3Liquidity transformation is often a topic related to banks. In our case, funds act as a bank, but
the main di�erence is in the absence of permanent capital to cover liquidity transformation, and in the
absence of speci�c regulation to frame this risk.
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fund whenever the e�ective selling price of the illiquid asset is such that it cannot cover

the capital out�ow even by liquidating all its portfolio. Our model can thus generate

endogenous liquidation events that arise from the impossibility for the fund manager to

reimburse its clients. It corresponds to the conjunction of a high out�ow on its liability

side and/or poor market conditions to liquidate the risky assets on its balance sheet.

In its baseline version, the model gathers three parameters: the probability of having

an out�ow of assets under management, the average rebate on the secondary market,

and the dependence between the return of the illiquid asset in period two and the market

liquidity conditions, or liquidity premium parameter. The hedge fund chooses its optimal

amount of cash to maximize its terminal value taking these parameters as given. A

particular advantage of our framework is that, for any set of parameters and a given

cash amount, both the expected value of the fund's portfolio and the fund's liquidation

probability are computable in closed form. This allows us to shed light on the link between

hedge funds expected returns and liquidation probabilities. After deriving the results in

the baseline case, we consider two extensions where (i) funds can impose gates that cap

the maximum withdrawal they have to face, and (ii) the amount of risky asset that fund

must liquidate feeds back onto a supplementary haircut, representing a potential market

impact.

Our model is directly inspired by the limits of arbitrage literature, which justi�es

that arbitrageurs do not automatically take advantage of evident arbitrage opportunities

when their funding is limited. We build around this idea to relate expected returns

and liquidation probability of the fund via the optimal liquidity policy. The optimal

liquidity level is fundamentally determined by this trade-o� between expected returns

and liquidation. It is therefore possible to use these two observed dimensions to infer the

e�ective unobserved liquidity level of a given fund.

Solving for the equilibrium produces three main insights. First, we show that the fund

manager naturally shifts her portfolio towards cash whenever liquidity conditions become

poorer, irrespective of the side of the balance sheet that is a�ected. The equilibrium port-

folio of the fund consists in making its liquidation probability insensitive to its average

expected out�ows, while the optimal invested amount of liquid asset is insensitive to

the market liquidity conditions. This emphasizes that liquidation probabilities of hedge

funds can reveal conditions about liquidity exposure on the asset side, whereas portfolio

composition can reveal liquidity exposure on the liability side, contrary to the intuition.

These comparative statics have implications on the fund's expected returns. When fund-

ing liquidity becomes poorer, the fund adjusts its cash holding upwards such that its

liquidation probability stays the same and generates lower expected returns because of

the portfolio composition shift. When market liquidity becomes poorer, the fund has a
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larger probability of liquidation that is compensated by an additional expected return

from the illiquid asset. The latter e�ect dominates the former, such that expected returns

increase with market illiquidity, as the empirical evidence suggests. In the end, simulta-

neous worsening in funding and market liquidity conditions can potentially dampen the

ability to identify meaningful movements in hedge funds expected returns due to active

liquidity management.

Second, we show that introducing gates that would limit the ability of investors to

withdraw their assets under management can largely mitigate these e�ects, by decreasing

default probabilities and then allowing the fund to capture the liquidity premium more

e�ciently. Whatever funding and market liquidity conditions, larger gates allow the

hedge fund to reduce its liquidation probability and increase its expected return. The

mechanism di�ers depending on liquidity conditions. When the probability to experience

out�ows is large, introducing gates directly decreases the fund's liquidation probability

for a given level of cash, more so if market liquidity is poor. It becomes optimal for the

manager to decrease its cash holdings to capture the liquidity premium of the risky asset

and increase its expected returns. When the out�ow probability is small, the fund has

incentives to increase its cash holdings to prevent itself further from liquidation and have

a greater chance to harvest the liquidity premium. Despite these alternative risk-return

trade-o�s, gates unambiguously ease the liquidity management of the hedge fund.

Third, we show that when the fund is large enough to have a market impact, i.e.

selling the illiquid asset further decrease its selling price, it unambiguously increases

its cash holdings such that both liquidation probabilities and expected returns are very

little a�ected. In this extension of our model, we consider that the haircut observed

on the secondary market grows with the additional cash that the fund must raise to

cover its out�ows. As a result, the fund manager increases its cash holding to curb the

average haircut su�ered in case of a signi�cant out�ow. We conclude that the e�ects of

liquidity spillovers from having larger funds can have a substantial e�ect on the portfolio

composition of funds while a�ecting the performance very little.

To illustrate the usefulness of our model, we propose an empirical application based on

the Lipper-TASS database. We observe a cross-section of funds at the monthly frequency

or several management styles that we aggregate in single time series. More speci�cally, we

consider the aggregate out�ow probability and the liquidation probability by averaging

across funds and use them to compute the optimal cash amount, the implied average

market liquidity, and the implied risky asset return. We show that the cash amount

and the market liquidity are negatively correlated, as the intuition would suggest, and

that the funds signi�cantly hedged their illiquid positions during the �nancial crisis to

avoid massive liquidations. We perform counterfactual experiments that suggest that the
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introduction of gates would greatly reduce the liquidation probability of funds more than

linearly. Alternatively, an increase in liquidity premium increases the attractiveness of

the risky asset and implies more risk-taking from the fund, increasing their liquidation

probability and decreasing their liquid asset holdings. Last and consistently with the

model, liquidity spillovers only have a low e�ect on the model outputs.

The consequence of market and funding liquidity shocks on Hedge Fund performance

has been intensively studied in the academic literature. However, most of these studies

consider the two risks separately, and only a few papers focus on the consequence of both

market and funding liquidity risks on hedge fund performance and survival.

Sadka (2010, 2012) examines funds' exposure to aggregate market-wide liquidity. He

investigates whether liquidity risk is priced in hedge fund returns using di�erent liquidity

risk factors and �nds that funds with high exposure to aggregate liquidity risk outper-

form those with low exposure by 6% annually during normal months. However, during

periods where liquidity is scarce, these funds with high liquidity risk drastically under-

perform those with low exposure. Teo (2011) studies the performance of the most liquid

hedge funds, i.e., those that o�er the shortest lockup and redemption notice periods to

their investors. He �nds that liquid funds that experience net capital out�ows may be

forced into �re sales, and su�er lower risk-adjusted returns (by 4.79 percent) than their

counterparts with high net in�ows. Finally, Jame (2015) uses transaction-level data to

study whether hedge funds pro�t from providing liquidity to the market. He focuses in

particular on liquidity provision as a source of hedge fund performance.

Dudley and Nimalendran (2010) show that the funding liquidity risk is priced in hedge

fund returns. They �rst develop a funding liquidity risk factor for hedge funds using the

residuals of a regression of futures margins on the implied volatility index (VIX). They

then include their factor in classic asset pricing tests such as portfolio sorts and factor

model regressions. Liu and Mello (2011) relate funding liquidity risk to funds' cash hold-

ings. The optimal cash holding re�ects a trade-o� between the reduction of liquidation

costs and the increase in returns by holding risky assets. They �nd that investors fear

that other investors may withdraw their capital and force a �re sale. They suggest that

redemption risk led hedge funds to hold more cash to resist to funding liquidity shocks.

Finally, Aragon and Strahan (2012) use the Lehman Brothers bankruptcy as an exoge-

nous shock to hedge funds' funding liquidity. Lehman Brothers was the prime broker for

many hedge funds in 2008. The authors �nd that the Lehman bankruptcy in September

2008 increased by 50% the default probability of funds using this prime broker during the

next year. However, they also stress that it is di�cult to empirically measure the impact

of funding liquidity risk on hedge funds since their strategies and funding arrangements

are jointly chosen. To circumvent this empirical issue, Hombert and Thesmar (2014)
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develop a model à la Shleifer and Vishny (1997). They assume that managers choose

a set of contractual features that impact how sensitive capital is to poor performance.

Therefore, lockup and notice periods restrict investors' ability to withdraw their capital

after a period of poor performance. The authors test the model predictions using self-

reported liquidity restrictions, estimated �ow-performance sensitivity and a new measure

that captures the ability of lockup provisions to retain capital in�ows. They �nd that fund

managers e�ectively choose contractual features to reduce investors' ability to withdraw

their capital.

Considering simultaneously funding and market liquidity risks, Agarwal, Aragon, and

Shi (2015) focus on funds of hedge funds and propose a measure of the di�erence (named

liquidity gap) between the liquidity of fund of funds' assets (i.e., underlying hedge funds in

the fund of funds portfolio) and the liquidity of fund of funds liabilities (i.e., redemption by

investors). Funds of funds with larger illiquidity gaps are shown to perform badly during

crises and exhibit greater exposure to runs (i.e. some investors redeeming strategically

prior to others when funds perform poorly). As in Jame (2015), Franzoni and Plazzi

(2013) study whether hedge funds pro�t from providing liquidity to the market. They

�nd that the level of liquidity provision decreases when funding and market conditions

deteriorate. They use the VIX index, the TED spread, and the LIBOR rate as proxies for

trading costs since these measures are related to the costs of borrowing or to the tightness

of margin requirements. Hedge funds' ability and willingness to provide liquidity during

times of lower market liquidity is also related to their own fund �ows. Finally, a decline

in hedge fund trading predicts a decline in liquidity at the individual stock level.

Our contributions are threefold. First, as in Agarwal, Aragon, and Shi (2015), we

consider jointly market and funding liquidity risks, but our model endogenizes the fund

manager behavior in terms of liquidity risk hedging. Second, we obtain the fund default

probability and the liquidity management cost as a function of the market and funding

liquidity conditions. We explain how fund managers adjust cash holdings to immunize

their fund against funding liquidity shocks. We con�rm the �rst results obtained by

Hombert and Thesmar (2014) on contractual provisions management and explain why

default probabilities are not increasing too much during the �nancial crisis (compared to

banks' default probabilities). Third, we build a new liquidity factor (the cash amount)

that re�ect the implied cost of the liquidity mismatch between assets and liabilities. This

factor is depending on both the market and the funding liquidity conditions, and not only

market (see e.g. Sadka (2010, 2012)) or funding (see e.g. Fontaine and Garcia (2012))

liquidity conditions.

The paper is organized as follows. Section 2 describes the setup where the hedge fund
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manages both market and funding liquidity risks. Section 3 describes how the model

is solved to get the optimal cash holding level and lists the model implications in a

benchmark case. Section 4 generalizes these results to cases where gates and liquidity

spillovers are present. Section 5 uses hedge fund data to illustrate the model predictions.

Section 6 concludes. All the proofs are gathered in the appendix.

2 The model

We present a model in which fund managers can choose to invest in a liquid asset, or

cash in the following to simply the presentation, to deal with funding liquidity shocks.

In addition, we assume that funds invest in illiquid assets whose valuation is exposed

to market liquidity shocks. Our objective is to derive equilibrium relationships between

liquidity conditions on the one hand, and fund's performance and liquidation probability

on the other hand. We later use these relationships in the empirical section to estimate

unobserved liquidity conditions from historical fund returns and defaults.

2.1 Funding liquidity shocks

We consider a two-period economy with a fund entity that is endowed with one unit of

capital at t = 0. This unit is contributed by a continuum of investors with measure one.4

At period t = 1, a funding liquidity shock can happen with probability π. If the shock

is realized, each investor may redeem its shares despite initially having the intention to

stay for two periods with the fund. More speci�cally, each investor closes its position with

probability θ ∼ U(0, θ), where the upper limit θ ∈ (0, 1] represents any legal or credible

limit to the maximum out�ows in the fund. The expected out�ow su�ered by the fund

ex-ante is thus given by πθ
2
.

Our modeling of funding liquidity is largely inspired from the framework developed

by Liu and Mello (2011). However, we add a source of �exibility through the parameter

π by considering that funds do not have to su�er positive out�ows. By allowing this

form of asymmetry in the distribution of out�ows, we aim at representing the liquidity of

the liability side. When π is close to 1, we come back to the case developed by Liu and

Mello (2011), which considers open-ended funds such as money market funds for instance.

Instead, when π is close to 0, we can represent closed-ended funds such as hedge funds.

The π parameter allows us to measure the impact of the structure of funds' clients on

the endogenous liquidity exposure chosen by the fund on the asset side.

4Our model in its current form does not consider leverage, i.e. the possibility to invest more than the
investors' capital.
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2.2 Market liquidity shocks

Faced with a potential out�ow of clients, the fund chooses to invest its assets under

management at t = 0. We consider that it can either keep cash, which pays a zero

interest rate and is available every period, or invest in an illiquid asset. The latter

provides a gross return R known ex-ante only if held until period t = 2. As in Shleifer

and Vishny (1997), we assume that there is no fundamental risk, such that R is greater

than one. However, in case the illiquid asset is sold at t = 1 on the secondary market, the

fund su�ers from a haircut such that the liquidation price is given by a random variable

α that belongs to (0, 1) almost surely.

In the following, we assume that:

− logα ∼ Exp(λ) , (1)

such that the expected selling price is λ
λ+1

, and the CDF of α is given by Fα(x) = xλ. This

quantity is decreasing in λ, which represents the expected degree of market liquidity. Said

di�erently, the bigger λ, the smaller the expected haircut, and the bigger the liquidation

price on the secondary market.

2.3 Fund value

So far, we have remained silent on the timing of events and the reasons for liquidating

the risky asset. In our framework, the fund chooses its cash quantity δ ∈ (0, 1) at t = 0

in order to maximize its portfolio value at t = 2. We consider that the value of the fund

is given by whatever remains on the asset side.

After choosing its portfolio (δ, 1 − δ), the fund faces three possible scenarios. First,

if there is no out�ow on the liability side, the fund's portfolio remains untouched and

all potential return of the risky asset is realized. The fund's �nal value is thus given by

F0 = δ + (1 − δ)R. A second case arises if clients are withdrawing from the fund, but

the latter has a su�ciently large cash cushion to cover all out�ows. In this case, the �nal

value of the fund is given by F0 − θ. The last case arises when the out�ows are larger

than the cash holdings of the fund, that is when θ > δ. In this case, the fund starts

liquidating its second asset to reimburse the clients.

In this case, the fund sells the minimal amount it needs to cover the out�ows. We

thus have that the �nal value of the fund's portfolio in this case is given by (see Appendix

A.1):

F1 = max [F0 − θ − γ(1− δ)(R− α), 0] where γ(1− δ)α = θ − δ . (2)
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In Equation (2), we see that whenever positive, the fund's portfolio is equal to its value

F0 absent any shocks, minus two separate costs. The �rst is θ, the withdrawal from

clients that reduces the fund's size. The second is an additional cost linked to the haircut

applied on the secondary market when the risky asset is liquidated. We additionally

assume limited liability such that the fund's value never go below zero. Last, γ is the

proportion of the risky asset holdings needed by the fund to cover the cash shortage θ−δ.

Figure 1 summarizes the setup and the di�erent liquidity scenarios.

Figure 1: Summary of the setup

t = 0 t = 1 t = 2

Cash quantity: δ
�
�
��

@
@
@R

1− π

π

No FL shock

θ = 0

FL shock

θ ∼ U(0, θ]

-

�
�
��

@
@
@R

No liquidation of risky asset

θ ⩽ δ

Liquidation of risky asset

θ > δ

Liquidation price: α

γ(1− δ)α = θ − δ

�
�
��

@
@
@R

No failure:

F1 = F0 − θ − γ(1− δ)(R− α)

θ − δ ⩽ (1− δ)α

Failure: F = 0

θ − δ > (1− δ)α

F0 = δ + (1− δ)R

- F = F0 − θ

Notes: FL stands for funding liquidity. γ is the quantity of the risky asset that needs to be liquidated

to cover the funding liquidity shock θ.

2.4 The fund's maximization problem

We assume that the fund manager's objective is to maximize the fund's total equity value

at t = 2. As remarked by Liu and Mello (2011), this objective is consistent with the max-

imization of the asset under management, that is an indicator of the fund's performance

and the capacity to attract new investors. Although close in spirit to Hombert and Thes-

mar (2014), our framework di�ers in the endogenous choice of the fund. Indeed, they

consider that the fund can only endogenously choose the friction to out�ows, θ in our

notation. In comparison, we assume that funds can keep a liquidity cushion to shelter

themselves from funding liquidity shocks. We choose to leave aside the endogenous choice

of θ, which would require a modeling of the associated costs for the fund. Our approach

allows us to represent the day-to-day liquidity management of the fund, whereas it is
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likely that Gates and barriers to capital out�ows are chosen once and for all when the

fund is created.

The fund's problem can be formulated as:

max
δ

(1− π)F0(δ) + π · δ
θ

[
F0(δ)− δ

2

]
+ π · θ−δ

θ
· E
[
max (F0(δ)− θ − γ(1− δ)(R− α), 0)

∣∣ θ − δ > 0
]
,

(3)

where the three terms correspond to the three possible scenarios where the fund survives.

F0(δ) emphasizes that the standard value of the fund's portfolio where no liquidity event

take place is a decreasing function of δ. After some algebraic manipulation (see Appendix

A.2.2), we have:

max
δ

F0(δ)− π · δ
(
1− δ

2θ

)
− π

θ
· (θ − δ)2

1− λ
·R ·

[
1

1 + λ
·
(
θ − δ

1− δ

)λ−1

− λ

2

]
. (4)

Three terms naturally emerge from the fund's expected value: a basis value F0(δ), and

two costs associated with the liquidity shocks. The �rst cost does not depend on the

market liquidity parameter λ and represents the opportunity cost of holding cash. This

cost goes to zero if the fund has no cash holdings (δ = 0), and goes to a maximum of

πθ/2 in case the fund is perfectly hedged against out�ows, which is equal to the expected

out�ow. The second cost is a complicated function of the market liquidity parameter and

represents the expected value of going on the secondary market. In most cases, this term

will decrease with the cash quantity, such that adding cash to the portfolio can increase

the expected value of the fund by protecting it against liquidity costs on the secondary

market. In the end, the fund's trade-o� is to balance its liquidity exposure by weighing

the opportunity cost of holding cash against a higher probability of survival.

In our framework, the market liquidity parameter λ is central by determining the

strength of the trade-o�. If λ is high, the asset is equivalent to a liquid short-term asset

that will be sold at its virtual fair value on the secondary market. In this case, the

opportunity cost of holding cash will dominate Equation (4). On the other hand, if λ is

small, the gains of the fund's investment are realized only in the long-run and the hedging

value of cash will dominate the fund's trade-o�.

3 Benchmark equilibrium results

In the following Section, we solve the fund's portfolio problem for a simple case where

θ = 1. We provide the resolution of the more general model in the robustness section.
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3.1 Solving for the fund's portfolio

We �rst provide the resulting optimal portfolio from the maximization of Equation (4).

Theorem 1 When θ = 1, the solution to the fund's portfolio problem is available in

closed-form and the amount of risky asset is given by:

1− δ∗ =
1

π
·

(λ+ 1)
(
1− 1

R

)
(λ+ 1)

(
1− 1

R

)
+ 1

. (5)

Theorem 1 has an intuitive interpretation. When the funding liquidity risk grows (π is

high), the fund decreases its quantity of illiquid asset to increase its chance of survival

at the end of the second period. When the secondary market becomes more liquid (λ

is high), the fund has a higher demand for the illiquid asset since the opportunity cost

of holding cash grows higher. Last and intuitively, when the return of the illiquid asset

grows, the fund demands more of it. Note that even if the return of the risky asset was

in�nite, the fund's portfolio would not be fully loaded with it. Indeed, pushing R to

in�nity, Equation (5) produces illiquid holdings of λ+1
π(λ+2)

, which can be as low as 1/2

for the worst funding and market liquidity conditions. The hedging motive due to the

possibility of the fund's failure is a strong driver of the fund's portfolio.

In the following Corollary, we introduce a speci�c knife-edge case where further sim-

pli�cations can be obtained.

Corollary 1.1 If we assume that illiquid asset returns compensate illiquidity risk such

that R = 1 + 1
λ
, optimal illiquid asset holdings are given by 1 − δ∗ = 1

2π
and only move

with the funding liquidity risk.

In Corrolary 1.1, the illiquid asset raw returns are the inverse of the expected haircut

that the fund su�ers on the secondary market. In this case, any worsening of market

liquidity conditions will at the same time increase the attractiveness of the illiquid asset

but decrease the survival probability at the fund of a similar amount. The fund thus

becomes only sensitive to funding liquidity risk π to form its portfolio.

In the end, we �nd that funds' cash holdings largely depend on liquidity conditions

in predictable and intuitive directions. More risk provides more hedging motives to the

manager.

3.2 Probability of liquidation and performance

What are the e�ects of such liquidity provisions on the fund's survival rate, and on

its performance? We provide a theorem to answer these questions in our benchmark

framework.
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Theorem 2 When θ = 1, the liquidation probability when the fund holds the optimal

cash amount δ∗ is given by:

Pr (F = 0) =
1− 1

R(
1− 1

R

)
(λ+ 1) + 1

, (6)

and the expected fund value is equal to:

E(F ) = 1− π

2
+

1

2
· 1
π
·

(λ+ 1)
(
1− 1

R

)
(λ+ 1)

(
1− 1

R

)
+ 1

(R− 1) (7)

Theorem 2 allows us to further explore the e�ects on market and funding liquidity param-

eters on two major characteristics. First, the larger the return of the illiquid asset R, the

bigger the liquidation probability of the fund since its attractiveness pushes the fund to

favor it in its portfolio, thus exposing itself to larger market liquidity risk. Second, we see

that the liquidation probability of the fund is a decreasing function of λ, that is the more

liquid the secondary market, the higher the survival chance of the fund. In turn, the cash

holdings of the fund are determined such that its survival probability is insensitive to the

funding liquidity parameter π. Thus, when cash holdings are endogenous, the survival

probabilities of the funds re�ect primarily the heterogeneity of liquidity on the asset side.

We turn now to Equation (7) that summarizes the risk-return relationship of the fund.

Combining the result with Theorem 1, we recognize that the fund's expected value can

be written R− π
2
− 1+δ∗

2
(R−1). R is the value achieved if there was no liquidity shocks to

a fund invested fully in illiquid asset. The second term represents the average out�ow of

investors at the �rst period, while the third term summarizes the expected opportunity

cost of holding cash. This formulation also allows us to easily obtain the in�uence of

the liquidity parameters on the fund's performance. First, an increase in the average

market liquidity λ will produce a higher expected fund performance, since illiquid asset

holdings go up and the expected return goes up by more than the liquidation probability.

Second, any increase in funding liquidity risk π automatically results in lower expected

performance for the fund. This mainly goes through two channels: (i) expected client's

withdrawal becomes larger, and (ii) cash holdings become larger. As we have seen above,

π has no impact on the liquidation probability of the fund at equilibrium such that the

increase in cash holdings only reduces the expected performance.

In the end, both types of liquidity risk go against the traditional risk-return relation-

ship, where one would expected that more exposure to either funding or market liquidity

would produce a compensation for the fund. Our corollary below explores the case where

returns of the illiquid asset can compensate the fund for the relative illiquidity of the

secondary market.
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Corollary 2.1 If we assume that illiquid asset returns compensate illiquidity risk such

that R = 1+ 1
λ
, the liquidation probability and expected performance of the fund are given

by:

Pr (F = 0) =
1

2(λ+ 1)
and E(F ) = 1− π

2
+

1

4πλ
. (8)

Corollary 2.1 shows that the expected performance of the fund can decrease with the

market liquidity when the investors are compensated for an illiquid risk premia in their

risky asset holdings. In the end, the risk-return relationship of the fund's performance is

determined by how the market compensates the exposure to higher illiquidity risk.

3.3 Risk compensation and comparative statics

As emphasized previously, the risk-return relationship of the fund's performance can be

di�erent depending on the premium of the market. In the following, we consider that

the return of the illiquid asset is given by R = 1 + κ
λ+1−κ

. In this expression, κ can be

interpreted as a risk premium parameter that transforms our expressions slightly.

Theorem 3 When θ = 1, and the return of the illiquid asset is given by R = 1+ κ
λ+1−κ

,

the equilibrium quantities are given by:

1−δ∗ =
1

π
· κ

κ+ 1
, P r(F = 0) =

κ

(κ+ 1)(λ+ 1)
, E(F ) = 1−π

2
+

κ2

2π(κ+ 1) (λ+ 1− κ)
.

(9)

The results of the previous theorem are modi�ed in straightforward ways. The larger

the risk premium parameter κ, the more attractive the risky asset is such that, (i) the

larger the illiquid asset holdings, (ii) the larger the liquidation probability, and (iii) the

larger the expected performance of the fund. Unambiguously, we also obtain expected

performance as a decreasing function of the market liquidity parameter λ, which restores

the natural risk-return relationship.

We perform comparative statics of these di�erent cases, considering several values

of (λ, π, κ), for our three quantities of interest. We consider λ varying from 0.1 to 5,

corresponding to an average haircut on the secondary market of 90% to close to 15%.

For the risk premium parameter, we consider κ ∈ {0.5, 1, 1.5}, and π ∈ {0.6, 0.8, 1}.
The results presented on Figure 2 con�rm our previous results, and we can additionally

gather order of magnitudes from the plot. The optimal liquidity management is quite

trivial as it does not depend on the market liquidity parameter λ. The cash quantities

shows only large variations with respect to the funding liquidity parameter π a the risk

premium parameter κ. For instance, for our baseline case where κ = 1, the optimal cash

quantity goes from 50% when the fund surely experiences an out�ow (π = 1) to below

12



Figure 2: Comparative statics: baseline
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Notes: λ is the degree of liquidity of the secondary market, π is the probability that a non-zero out�ow

is observed, and κ is a risk premium parameter.

20% when π = 0.6. This shows that the fund's portfolio is highly sensitive to the funding

liquidity risk and to its client's structure. In turn, its survival is only sensitive to the

market liquidity parameter5 λ. Looking at the second row of Figure 2, we see that for our

baseline case, the liquidation probability decreases from 45% for a highly illiquid market

to about 10% for a highly liquid market. Expected returns are impacted by π all the

time and λ only when the illiquidity premium is large. Otherwise λ has no impact on

performance. When κ is small, it is essentially π which will move fund returns. Our

key message here is thus that the heterogeneity of funds asset and liability sides can be

observed through its liquidation probability and cash holdings, respectively.

5As the PD depends on λ, we may obtain information on λ from the PD using an implicit approach.
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4 Extensions

In this section, we extend our previous results by looking at cases where Gates exist

(θ < 1), and where the fund can have a market impact by selling its assets on the

secondary market. We show that the fund's expected performance is still available in

closed-form, but the folution to the fund's problem is not. All results are thus computed

with numerical optimization in this section.

4.1 The e�ect of Gates

In the previous section, we only considered the case where the fund did not implement any

Gate, i.e. θ = 1. We relax this assumption in this Section and explore its e�ects on our

three quantities of interest. To simplify exposition and comparison, we consider hereby

that R = 1 + 1/λ, i.e. our baseline risk premium case. We start back from Equation (7)

and solve the maximization program numerically. The results are presented on Figure

3. Gates are expected to decrease liquidity monotonically. But putting gates will have

non-trivial e�ects and especially not monotonous ones. Liquidity management becomes

more complex. The optimal cash amount will depend on both π and λ (decreasing in

λ), and both dimensions of illiquidity are managed. The optimal cash increases when π

is small (�quasi-closed� funds), which is counterintuitive), and decreases when π is high

(�quasi-open� funds), which is intuitive. The gate policy is suitable for funds that o�er a

lot of liquidity to their clients, not for others.

Most of the qualitative results from our benchmark case still hold when we move θ.

First, the fund's expected performance decreases with θ. This result is natural since in our

model, the gates are determined exogenously and gather no cost for the fund. Thus, gates

protect the fund against funding liquidity shocks and its expected performance increases.

As a result, liquidation probabilities are virtually split in half when θ = 0.6 compared to

θ = 1. In addition, the probabilities now vary with the funding liquidity parameter π,

even if the lines stay close to each other (see middle row of Figure 3). Interestingly, the

liquidation probability grows when the probability of out�ow decreases. Indeed, when the

fund faces less funding liquidity risk, it shifts its portfolio towards the illiquid asset. Since

the illiquid asset is attractive, it is willing to su�er a higher liquidation probability to

capture the excess returns provided by its risky investment. Last, the relationship between

cash holdings and gates is ambiguous. Comparing θ = 0.8 with θ = 1 for instance, we

see cash holdings can increase or decreases depending on the funding liquidity parameter

π. When the latter is equal to 1, cash holdings will increase with θ in order to hedge

the additional liability risk. When π is low, cash holdings decrease with θ because any

additional hedge from the fund is not worth the opportunity cost of cash. When π = 0.8,

14



Figure 3: Comparative statics: gates
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Notes: λ is the degree of liquidity of the secondary market, π is the probability that a non-zero out�ow

is observed, and θ is the Gate parameter. We �x κ = 1.

we see that cash holdings can increase or decrease with θ depending on the secondary

market liquidity. When market liquidity is high, cash holdings decrease with θ because

the return of the illiquid asset is not large enough to compensate the additional risk, and

vice versa.

In the end, we conclude that including gates in the analysis conserve most of our

qualitative �ndings but complexify the relationship between cash holdings and liquidity

risks. Any variation of gates has to be weighted with respect to the existing risk-return

relationship. When funding liquidity risk is already high, including gates allows the fund

to shift its portfolio to more risky assets. Conversely, when funding liquidity risk is

low, including gates is not so important such that the hedging motive dominates. The

reasoning follows the same pattern for market liquidity risk.
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4.2 Spillover e�ects

Our framework allows us to include spillover e�ects from funding to market liquidity

while conserving the analytical properties of the expected fund performance. We propose

a mechanism to correlated the funding and market liquidity shocks aiming at reproducing

�resale e�ects, thus extending the baseline model of Liu and Mello (2011). More specif-

ically, we assume in this section that the selling price on the secondary market is given

by:

α̃ = α · 1

1 + a(θ − δ)λ+1 · 1{θ>δ}
. (10)

While the speci�cation (10) is mainly driven by computational purposes, its economic

interpretation is quite simple. First, notice that the speci�c case a = 0 boils down to

our benchmark framework presented in the previous Section. Second, we see that the

implied haircut on the secondary market grows larger with the unhedged out�ow θ − δ,

decreases with the market liquidity λ, and is ampli�ed by the new spillover parameter

a. For an easier interpretation of the added parameter, we present the expected selling

price of the illiquid asset for di�erent values of a. We distinguish three cases of maximum

underfunding: θ − δ = {0.25, 0.5, 0.75} for illustration.

Figure 4: Expected selling price
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Notes: λ is the degree of liquidity of the secondary market, a is the spillover parameter and θ is the

maximum out�ow. δ is �xed and not endogenous in this plot.

The results presented on Figure 4 clearly show the e�ect of a larger spillover parameter

a, and a larger expected underfunding θ − δ. For each plot, keeping δ constant, the

expected selling price decreases with the strength of the spillover, and with the maximum

underfunding. For instance, for a market applying a 20% haircut without spillover in case

the fund needs 50% funding, (λ = 4, central panel), adding the spillover parameter to

5 and 10 shifts the expected selling price to 78% and 76% respectively. This gap grows

with the illiquidity of the market (λ low) and with the expected underfunding ratio.

The previous interpretation did not factor in the endogenous choice of the cash quan-
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tity δ. The following theorem proposes a generalization of our results to the case where

the fund can su�er from spillovers.

Theorem 4 Let us de�ne θ∗ = max
{
x ∈ [0, θ − δ] such that x(1 + axλ+1) ⩽ (1− δ)

}
.

The liquidation probability is given by:

Pr(F = 0) =
π

θ
·

θ − δ − θ∗ +

(
1 + aθ∗

λ+1
)λ+1

− 1

a(1− δ)λ(λ+ 1)2


and expected fund performance:

E(F ) = (1− π)F0 + π · δ
θ
·
(
F0 −

δ

2

)

+
π

θ
· (1− δ) ·R ·

θ∗ + λ

(1− δ)(1− λ)

(
θ∗

2

2
+ a

θ∗
λ+3

λ+ 3

)
−

(
1 + aθ∗

λ+1
)λ+1

− 1

a(1− δ)λ(λ+ 1)2
· 1

1− λ


When there is no �re sale e�ect, a = 0 and θ∗ = θ − δ, and we obtain the standard case

presented above. For any positive a however, we have to compute the result of both the

value of θ∗ and the maximum expected performance numerically. We present the results

on Figure 5. In the left column, we put back the results without spillovers for the sake

of comparison. Liquidity management becomes even more complex. Optimal cash policy

becomes very dependent on λ with non-linear e�ects.

When the spillover parameter grows, the fund is leaning more towards cash to hedge

for the extra market liquidity risk. In other words, its trying to mitigate risk by reducing

the amount of secondary asset it needs to sell if clients ask to get out. The e�ect can

be quite large, especially when the out�ow probability is at low (π = 0.6, green lines).

Indeed, for a low out�ow probability, the illiquid asset is very attractive and the fund only

needs to keep less than 20% of cash on its balance sheet, whatever the market liquidity.

In turn, with spillover e�ects, if a funding liquidity shock happens, a low level of cash

holding gets a lot worse for the fund since its haircut has a large extra component that

reduces the expected attractiveness of the illiquid asset. The attractiveness of the illiquid

asset thus becomes inherently linked to the cash holdings of the fund, changing the risk

return trade-o� of the fund. Last, Figure 5 shows that adding spillovers from funding to

market liquidity risk increases the liquidation probability, and reduces the fund's expected

performance, but these e�ects are rather small in magnitude.

In summary, adding spillover e�ects does not change the qualitative features of our

�ndings. The only signi�cant deviation is the relationship between cash and liquidity risk,

where cash holdings can now vary di�erently with respect to market liquidity, depending
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Figure 5: Comparative statics: spillover
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is observed, and a is the spillover parameter. We �x κ = 1, θ = 1.

on the expected spillover.
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5 Empirical Application

In this section, we calibrate the model to real hedge fund data to obtain some of the

industry characteristics as time series. More precisely, we �rst use some time series of

statistics derived from the cross-section of funds' observed liquidations to �lter at each

date the illiquid asset returns as well as the portfolio liquidity characteristics, i.e. the

e�ective allocation between liquid and illiquid assets. In a second step, we take the

market characteristics as given and perform counterfactual experiments, varying gates,

or spillover e�ects.

5.1 The data

The Lipper TASS database consists of monthly returns, Asset Under Management (AUM)

and other HF characteristics for individual funds from May 1973 to October 2015.6 The

database categorizes HF into "Live" and "Graveyard" funds. We apply a series of �lters

to the data. First, we select only funds with Net Asset Value (NAV) written in USD,

with monthly reporting frequency. This avoids double counting, since the same fund can

have shares written in USD and Euro for example.

6Tremont Advisory Shareholders Services. Further information about this database is provided on
the website http://www.lipperweb.com/products/LipperHedgeFundDatabase.aspx.
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Table 1: The database.

Live funds Liquidated funds Total

(#) (%) (#) (%) (#) (%)

Conv 23 2.14 195 3.83 218 3.54

Em 153 14.26 495 9.73 648 10.52

Emn 41 3.82 362 7.12 403 6.54

Ed 101 9.41 511 10.05 612 9.94

Fi 35 3.26 208 4.09 243 3.94

Gm 69 6.43 401 7.82 470 7.63

Lse 407 37.93 1914 37.63 2321 37.68

Mf 134 12.49 573 11.26 707 11.48

Ms 110 10.25 428 8.41 538 8.73

Total 1073 100 5087 100 6160 100

Notes: Codes are as follows: Conv: convertible arbitrage, Em: emerging markets, Emn: equity market

neutral, Ed: event driven, Fi: �xed income arbitrage, Gm: global macro, Lse: long/short equity

hedge, Mf: managed futures, Ms: multi-strategy. The table provides the distribution of iive funds on

October 2015, and funds liquidated prior to October 2015, across the nine management styles.

We obtain 2353 funds in the "Live" base, and 8826 liquidated funds. Second, we

only consider HF reporting their Asset Under Management on a regular basis. This

information is essential to compute the time series of in�ows and out�ows. Third, to

keep the interpretation in terms of individual funds, we eliminate the funds of funds and,

for funds with multiple share classes, we eliminate duplicate share classes from the sample.

Finally, we select the nine management styles with a su�ciently large size. These are

Long/Short Equity Hedge (Lse), Event Driven (Ed), Managed Futures (Mf), Equity

Market Neutral (Emn), Fixed Income Arbitrage (Fi), Global Macro (Gm), Emerging

Markets (Em), Multi Strategy (Ms), and Convertible Arbitrage (Conv). After applying

all these �lters, we get 1073 funds in the "Live" database and 5087 liquidated funds.

The distribution by style of live and liquidated funds in the database is reported in

Table 1. The largest management style in the database of live and liquidated funds is

Long/Short Equity Hedge (about 40%), followed by Managed Futures, Multi-Strategy

and Event Driven (each about 10%). In the following, we only consider in the following

the Long/Short Equity Hedge strategy. In addition, to obtain more reliable results, we

start the sample in 2000 only where the number of funds is su�cient.
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We denote the time index by t ∈ {1, . . . , T} and the fund index by i ∈ {1, . . . , Nt},
where T is the total number of periods in the sample and Nt is the total number of funds

alive at date t. The fund �ows fi,t are the growth rate of the assets under management

as a percentage of the net asset value minus the performance. The fund default variable

di,t = 1 if ith fund net asset value is not reported at t whereas it was reported before.

We compute two baseline series to guide our empirical exercise. The �rst important

input for our model is the probability of experiencing an out�ow π. The second important

observable is the liquidation probability, which will help us back out the primitives of the

fund's optimization problem, such as the average market liquidity and the optimal cash

amount. We compute these estimates from the data with simple plug-in estimators, such

that:

π̂t =
1

Nt

Nt∑
i=1

1 {fi,t < 0} and P̂Lt =
1

Nt−1

Nt−1∑
i=1

di,t . (11)

π̂t is the average across all funds of the number of funds who experience out�ows in

a given month. P̂Lt is the average across funds of funds who were alive at t − 1 and

stop reporting at t. These time series are represented on Figure 6, panels (a) and (b),

respectively. On panel (a), we see that the average out�ow probability is quite high at

about 45% across the whole sample. It trends upwards, from 40% to 60% between 2000

and 2015. Importantly, the great �nancial crisis shows a large spike at 65%, showing that

a lot of clients were eager to pull their investments out from the hedge fund industry.

Interestingly, this spike is much less pronounced for the liquidation probability of hedge

funds (panel b), showing that funds were hedging part of their risk on the liability side.

The overall liquidation probability is much smaller, between 0.5% and 4%, where the

biggest spike can be observed during the European debt crisis in 2012. These two series

together inform us about the funds' trade-o�.

5.2 Calibration method

In our �rst calibration exercise, we assume no liquidity spillover and set a = 0. There are

four unknowns to the model: the out�ow probability, which we proxy by π̂, the market

liquidity index λ, the risky asset return R, and the gates parameter θ. To simplify our

problem, we consider the version of our model developed in Section 3.3, where we set

κ = 0.5. Thus we set:

R̂ = 1 +
1

2λ+ 1
. (12)

Second, to provide a more realistic framework, we assume that the gates parameters is

set at 0.6, such that only 60% of the liabilities of the fund can be retrieved by investors.

This also allows us to get interior solutions to the cash optimization problem given the

21



Figure 6: Data Series: Probabilities
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Notes: This Figure represents the estimated series for the out�ow (panel a) and liquidation probability

(panel b). These series are computed as averages across funds, as de�ned by Equation (11). Management

styles are Convertible Arbitrage (CA), Emerging Markets (EM), Equity Market Neutral (EMN), Event

Driven (ED), Fixed Income Arbitrage (FIA), Global Macro (GM), Long/Short Equity Hedge (LSE),

Managed Futures (MF), and Multi Strategy (MS). Data is monthly from January 2000 to October

2015.

out�ow and liquidation probabilities derived from data.

Our last degree of freedom is the degree of market liquidity λ. We estimate it from

data by minimizing the squared distance between the model-implied and data liquidation

probability P̂L. Our approach thus allows to back out simultaneously the cash amount

and market liquidity from from the data, the latter allowing us to obtain the risky asset

return accordingly with Equation (12).

5.3 Estimation results

Our results are presented on Figure 7. On panel (a), we see that the cash amount (or the

liquid part in the portfolio allocation) moves hand-in-hand with the probability of out�ow

presented on Figure 6, panel (a). This means that, accordingly with our theory presented

above, the fund decides its cash/liquidity policy primarily to hedge its liquidity risk on
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the liability side. Indeed, looking back at Theorem 3, we see that κ = 0.5 would imply

a cash policy of 1− 1
3π

if there was no gates. In the presence of gates, the trade-o� may

be modi�ed slightly but it remains that the optimal cash/liquid amount is increasing in

the out�ow probability. The optimal cash/liquid amount �uctuates between 0.1 in 2004

and 0.5 during the great �nancial crisis, that is between 15% and 85% of the immediately

pledge-able liabilities. This magnitude is quite high, and can be put in perspective if

we interpret the cash/liquid amount as amounts that are available for borrowing for the

fund. Indeed, funds have a maximum leverage that is not binding in practice. They can

thus raise cash by increasing their e�ective leverage. We learn form this result that, since

2005, hedge funds have increased their liquid investment to become funds like mutual

funds. They provide liquidity by investing in liquid assets.

Second, panel (b) of Figure 7 presents the estimated degree of market liquidity con-

sistent with the observed liquidation probability. Comparing with panel (b) of Figure 6,

there is an obvious negative correlation between the two series, meaning that most of the

increase in the liquidation probability is due to a relatively poorer market liquidity in

hedge fund investments over time. Market liquidity hits its lowest at 0.5 during the great

�nancial crisis, the European debt crisis, and towards the end of the sample. The put

some economic magnitude on these numbers, remember that the average haircut that is

applied on the secondary market for the illiquid asset is equal to 1− λ
λ+1

, corresponding to

as much as 65% in these periods of poor liquidity. In periods of better liquidity conditions

such as the �rst half of the sample, the average haircut is about 25%, su�ciently to make

about 1% of hedge fund go into liquidation. Last, panel (c) presents the implied risky

asset return that is inversely related to the degree of market liquidity, by assumption.

The return can be quite high in bad liquidity times, representing the fact that the price

falls down during crises such that the expected return increases.

5.4 Counterfactual experiments

In this section, we consider some counterfactual scenarios where we make the gates, risk

compensation, and spillover components vary, while keeping everything else constant.

More speci�cally, we take as inputs the out�ow probabilities π̂ and the estimated market

liquidity series λ̂ presented in the previous sections. We recompute the optimal cash/liq-

uidity policy and the liquidation probability implied by making the other components

vary one at a time.

We �rst focus on the impact of gates, presented on Figure 8. We can answer the

question of what would have happened if hedge funds could have limited the amount

of liquidity risk on the liability side by lowering the gates to 50% rather than 60%.

Unsurprisingly, the hedge fund is able to unload some of its liquid asset and tilt its
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Figure 7: Model Outputs: Cash, Return, and Market Liquidity
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Notes: This Figure represents the estimated series for the optimal cash policy δ∗ undertaken by the hedge

fund (panel a), the degree of market liquidity λ̂ backed out from observable data (panel b), and the implied

risky return R̂ as de�ned by Equation (12). Management styles considered to compute the out�ow and

liquidation probabilities � inputs of the estimation method � are Convertible Arbitrage (CA), Emerging

Markets (EM), Equity Market Neutral (EMN), Event Driven (ED), Fixed Income Arbitrage (FIA),

Global Macro (GM), Long/Short Equity Hedge (LSE), Managed Futures (MF), and Multi Strategy

(MS). Data is monthly from January 2000 to October 2015.

portfolio towards the illiquid asset (panel a). The decrease is quite modest nonetheless,

of a maximum of 0.05 during the great �nancial crisis. However, while doing so, it is

able to also reduced its liquidation probability and cut it by more than half since a lower

amount is directly pledgeable by clients on its liability side. Therefore, gates have the
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positive impact of protecting the fund while allowing it to capture more of the illiquid

asset premium and thus increase its expected return. While, as mentioned before, gates

may have other costs that are outside the range of our model, we emphasize that they can

be bene�cial to the clients as it allows the fund to capture more of the market liquidity

premium.

Figure 8: Model Outputs: alternative gates
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Notes: This Figure represents the estimated series for the optimal cash policy δ∗ undertaken by the

hedge fund (panel a), and the liquidation probability (panel b) as implied by our model. Inputs are

the out�ow probabilities of Figure 6 panel (a), as well as the estimated market liquidity conditions and

risky asset returns estimated on Figure 7. Blue curves are the baseline model result with θ = 0.6,

red curves present the counterfactual results obtained with θ = 0.5. Management styles considered to

compute the out�ow and liquidation probabilities � inputs of the estimation method � are Convertible

Arbitrage (CA), Emerging Markets (EM), Equity Market Neutral (EMN), Event Driven (ED), Fixed

Income Arbitrage (FIA), Global Macro (GM), Long/Short Equity Hedge (LSE), Managed Futures (MF),

and Multi Strategy (MS). Data is monthly from January 2000 to October 2015.

Second, we study the e�ect of alternative risk compensation by switching κ = 0.5 to

κ = 0.75. In the latter case, the risky return is given by R = 1 + 3
4(λ+1)−3

and increases.

Results are presented on Figure 9. On panel (a), we see that the quantity of cash/liquid

asset held by the hedge fund decreases as a result of the increased attractiveness of the

illiquid asset. The decrease is more pronounced up to 0.1 when the out�ow probability
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is lower, at the beginning of the sample for instance. As a result, panel (b) shows that

the liquidation probability increases signi�cantly and even reaches 10% by the end of the

sample. The shift in the risk-return trade-o� for the illiquid asset leads the hedge to take

on more risk to try to capture more of the market liquidity premium.

Figure 9: Model Outputs: alternative premia

0.0

0.2

0.4

0.6

Jan 2000 Jan 2005 Jan 2010 Jan 2015

κ
0.5

0.75

θ = 0.6

Panel (a): Cash amount

Management styles: CA, EM, EMN, ED, FIA, GM, LSE, MF, MS

0.000

0.025

0.050

0.075

0.100

Jan 2000 Jan 2005 Jan 2010 Jan 2015

κ
0.5

0.75

θ = 0.6

Panel (b): Liquidation probability

Management styles: CA, EM, EMN, ED, FIA, GM, LSE, MF, MS

Notes: This Figure represents the estimated series for the optimal cash policy δ∗ undertaken by the

hedge fund (panel a), and the liquidation probability (panel b) as implied by our model. Inputs are

the out�ow probabilities of Figure 6 panel (a), as well as the estimated market liquidity conditions and

risky asset returns estimated on Figure 7. Blue curves are the baseline model result with κ = 0.5,

red curves present the counterfactual results obtained with κ = 0.75. Management styles considered to

compute the out�ow and liquidation probabilities � inputs of the estimation method � are Convertible

Arbitrage (CA), Emerging Markets (EM), Equity Market Neutral (EMN), Event Driven (ED), Fixed

Income Arbitrage (FIA), Global Macro (GM), Long/Short Equity Hedge (LSE), Managed Futures (MF),

and Multi Strategy (MS). Data is monthly from January 2000 to October 2015.

Last, we consider a counterfactual scenario where there are liquidity spillovers (a ̸= 0)

and the amount that the fund liquidates on the secondary market feeds back onto the

selling price that it can secure. We switch from a baseline scenario where there is no

liquidity spillover to a parameter of a = 5. Results are presented on Figure 10 in blue

for the baseline and red for the counterfactual scenario. When spillovers are present, the

fund endogenizes the risk and holds a larger amount of cash/liquid asset with respect
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to the baseline scenario. The increase is the largest when market liquidity is less of an

issue, such as during 2004 where the amount of cash switches from 0.05 to nearly 0.15.

Instead, during the great �nancial crisis, where the market liquidity is poor, there are

nearly no di�erence in the cash/liquidity bu�ers. Interestingly, and despite the increase

of risk when the fund is liquidating its illiquid asset, the overall impact on the liquidation

probability is negative such that the fund is less likely to cease its activity. So liquidity

spillovers can lead the fund to take on less risk, both in terms of market liquidity exposure

and liquidation probability.

Figure 10: Model Outputs: alternative spillover
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Notes: This Figure represents the estimated series for the optimal cash policy δ∗ undertaken by the

hedge fund (panel a), and the liquidation probability (panel b) as implied by our model. Inputs are

the out�ow probabilities of Figure 6 panel (a), as well as the estimated market liquidity conditions

and risky asset returns estimated on Figure 7. Blue curves are the baseline model result with a = 0,

red curves present the counterfactual results obtained with a = 5. Management styles considered to

compute the out�ow and liquidation probabilities � inputs of the estimation method � are Convertible

Arbitrage (CA), Emerging Markets (EM), Equity Market Neutral (EMN), Event Driven (ED), Fixed

Income Arbitrage (FIA), Global Macro (GM), Long/Short Equity Hedge (LSE), Managed Futures (MF),

and Multi Strategy (MS). Data is monthly from January 2000 to October 2015.
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6 Conclusion

In this paper, we show that hedge funds face liquidity risks both on the asset and liability

sides that lead them to keep a positive amount of liquid assets to survive and capture

the liquidity premium of illiquid assets. We formalize the fund's trade-o� in a two-period

model where it has access to a liquid asset and an illiquid asset, and where clients can

ask to redeem their shares before the illiquid asset return is realized. After characterizing

the optimal liquidity policy, we show that imposing gates in some cases can be bene�cial

since it allows the fund to take on more risk on the asset side while limiting its risk

on the liability side. Our results are una�ected qualitatively by the presence of liquidity

spillovers from the liability side to the asset side. Last, we provide an empirical calibration

on hedge fund data to show how the di�erent sorts of liquidity risks have evolved during

the 2000-2015 sample.
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A Appendix

A.1 Case by case fund value

In the case of no liquidity shock, the fund collects the proceeds of its investment, i.e. cash

δ and the return from the risky asset (1− δ)R. We denote by:

F0 = δ + (1− δ)R .

In case of a small liquidity shock, this quantity is slashed from the cash that is getting

out, i.e. F0 − θ. In case of a large liquidity shock, obtaining Equation (2) takes a bit

more work. The fund walks out with only the proceeds of what remains of its risky asset

investment. Since it liquidates a proportion γ of its risky position, we have:

F1 = (1− γ)(1− δ)R

= δ + (1− δ)R + (1− γ)(1− δ)R− δ − (1− δ)R

= F0 − γ(1− δ)R− δ .

Then, since the fund liquidates only the necessary amount, we have γ(1 − δ)α = θ − δ.

We then introduce θ as:

F1 = F0 − γ(1− δ)R− δ − θ + δ + γ(1− δ)α

= F0 − θ − γ(1− δ)(R− α) .■

A.2 Solving the model

To solve it analytically, we express its expectation from period t = 0 using the law of

iterated expectations:

E(F ) = (1− π)E(F0) + π · P(θ < δ) · E(F0 − θ | θ < δ)

+ π · P(θ > δ) · P(γ ⩽ 1 | θ > δ) · E [F0 − θ − γ(1− δ)(R− α) | θ > δ, γ ⩽ 1] .

The probability appearing on the second row is the joint probability of experiencing a

funding liquidity shock which is big enough to trigger liquidation of the risky asset, and

that the haircut on the secondary market is small enough to be alive at the last period.
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We can simplify as:

E(F ) = (1− π)F0 + π · δ
θ
·
(
F0 −

δ

2

)
+ π · θ − δ

θ
· (1− δ) ·R · P(γ ⩽ 1 | θ > δ) · E [(1− γ) | θ > δ, γ ⩽ 1] .

The main di�culty resides in calculating the last row of the previous Equation. It is

useful to simplify it as follows:

P(γ ⩽ 1 | θ > δ) · E [1− γ | θ > δ, γ ⩽ 1] = P(γ ⩽ 1|θ > δ)− E
(
γ1{γ⩽1}|θ > δ

)
. (13)

The proof is easily obtained using the law of total probability.7 The computation of these

two unknown terms are detailed in the next section.

A.2.1 Liquidation probability given the cash holding δ

We prove all results in the general case of Section 4.2 and derive the speci�c cases in the

following sections.

Theorem 5 Given a cash holding level δ and the occurrence of a big liquidity shock

(θ > δ), the conditional liquidation probability is given by:

P (γ > 1|θ > δ) = 1− θ∗

θ − δ
+

(
1 + aθ∗

λ+1
)λ+1

− 1

a(θ − δ)(1− δ)λ(λ+ 1)2
, (14)

where θ∗ = max
{
x ∈ [0, θ − δ] such that x(1 + axλ+1) ⩽ 1− δ

}
. (15)

Note that when a = 0, θ∗ = θ − δ. Conversely, when a → +∞, θ∗ → 0. When a = 0, we

have: (
1 + aθ∗

λ+1
)λ+1

− 1

a(θ − δ)(1− δ)λ(λ+ 1)2
∼

(
θ − δ

)λ
(λ+ 1) (1− δ)λ

(16)

and the conditional liquidation probability is given by:

P (γ > 1|θ > δ) =
1

λ+ 1
·
(
θ − δ

1− δ

)λ

When in addition θ = 1, the conditional liquidation probability is independent from δ and

is given by:

P (γ > 1|θ > δ) =
1

λ+ 1
.

7E
(
γ1{γ⩽1}

)
= P(γ ⩽ 1)E

(
γ1{γ⩽1}|γ ⩽ 1

)
+ P(γ ⩾ 1)E

(
γ1{γ⩽1}|γ ⩾ 1

)
= P(γ ⩽ 1)E (γ|γ ⩽ 1).
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Corollary 5.1 Given a cash holding level δ, the fund liquidation probability is given by:

P(γ > 1) =
π

θ

θ − δ − θ∗ +

(
1 + aθ∗

λ+1
)λ+1

− 1

a(1− δ)λ(λ+ 1)2

 . (17)

When a = 0, this probability simpli�es to:

P(γ > 1) =
π

θ
· (θ − δ)λ+1

(λ+ 1)(1− δ)λ
.

For the sake of notational simplicity, we �rst de�ne θ̃ = θ − δ. Conditionally on the

combination of a liquidity shock happening and that the liquidation of the risky asset

must be performed, we have:

θ̃|θ > δ ∼ U(0, θ − δ) ,

that is the conditional pdf of θ̃ is given by fθ̃(x) =
1{x∈[0,θ−δ]}

θ − δ
. Remember that the

conditional pdf of − logα is given by f(x) = 1{x⩾0}λ exp(−λx).

The default probability is the probability that the proportion of risky asset to liquidate

exceeds 100%. We therefore compute:

P
(
γ > 1|θ̃ > 0

)
= P

 θ̃
(
1 + aθ̃λ+1

)
1− δ

· 1
α

> 1|θ̃ > 0


= E

E

1
 θ̃

(
1 + aθ̃λ+1

)
1− δ

· 1
α

> 1

 |θ̃

 |θ̃ > 0


= E

P

 1

α
>

1− δ

θ̃
(
1 + aθ̃λ+1

) |θ̃
 |θ̃ > 0


Two cases must be distinguished. It is possible that the ratio inside the probability is

lower than 1. In this case, the conditional probability is exactly equal to 1 since α has

support on (0, 1). We can then use the fact that α = e−β where β ∼ Exp(λ) and the

properties of the exponential distribution to write the following simpli�cation:

P
(
γ > 1|θ̃ > 0

)
= E

1
 1− δ

θ̃
(
1 + aθ̃λ+1

) > 1


 θ̃λ

(
1 + aθ̃λ+1

)λ
(1− δ)λ

− 1

+ 1
∣∣∣θ̃ > 0


= 1 +

∫ θ−δ

0
1
{
x
(
1 + axλ+1

)
< 1− δ

}[xλ (1 + axλ+1
)λ

(1− δ)λ
− 1

]
1

θ − δ
dx
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We de�ne:

θ∗ = max
{
x ∈ [0, θ − δ] such that x(1 + axλ+1) ⩽ 1− δ

}
.

Noting that: ∫
xλ
(
1 + axλ+1

)λ
=

(
1 + axλ+1

)λ+1

a(λ+ 1)2

The integral now writes:

P
(
γ > 1|θ̃ > 0

)
= 1 +

∫ θ∗

0

xλ
(
1 + axλ+1

)λ
(1− δ)λ

1

θ − δ
dx− θ∗

θ − δ

= 1− θ∗

θ − δ
+

1

(1− δ)λ(θ − δ)

[(
1 + axλ+1

)λ+1

a(λ+ 1)2

]θ∗
0

= 1− θ∗

θ − δ
+

(
1 + aθ∗

λ+1
)λ+1

− 1

a(θ − δ)(1− δ)λ(λ+ 1)2
,

which proves the result in the general case. Using theorem 5, we obtain the total proba-

bility of default as:

P(γ > 1) = π · P(θ > δ) · P(γ > 1 | θ > δ)

= π · θ − δ

θ
·

1− θ∗

θ − δ
+

(
1 + aθ∗

λ+1
)λ+1

− 1

a(θ − δ)(1− δ)λ(λ+ 1)2

 .

=
π

θ
·

θ − δ − θ∗ +

(
1 + aθ∗

λ+1
)λ+1

− 1

a(1− δ)λ(λ+ 1)2


A.2.2 The fund's expected value

We focus now on the second term of Equation (13), that is the expected liquidated

proportion of risky asset in case of no failure.

Theorem 6 The expected liquidated proportion of risky asset is available in closed-form

and given by:

E
[
γ1{γ<1}|θ > δ

]
=

λ

(1− δ)(1− λ)(θ − δ)


(
1 + aθ∗

λ+1
)λ+1

− 1

a(λ+ 1)2(1− δ)λ−1
− θ∗

2

2
− a

θ∗
λ+3

λ+ 3

 .

(18)

To express the expected value of expression (13), we now need to compute the expected

fund's value in the case when there is a big liquidity shock. Let us rewrite Equation for
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convenience (13):

P(γ ⩽ 1 | θ > δ) · E [1− γ | θ > δ, γ ⩽ 1] = P(γ ⩽ 1|θ > δ)− E
(
γ1{γ⩽1}|θ > δ

)
.

The survival probability can be easily deduced from the default probability computed in

the previous section. We therefore focus on the expectation term.

E
[
γ1{γ < 1}|θ̃ > 0

]
= E

 θ̃
(
1 + aθ̃λ+1

)
1− δ

1

α
1

 1

α
<

1− δ

θ̃
(
1 + aθ̃λ+1

)
 |θ̃ > 0


= E

 θ̃
(
1 + aθ̃λ+1

)
1− δ

E

 1

α
1

 1

α
<

1− δ

θ̃
(
1 + aθ̃λ+1

)
 |θ̃

 |θ̃ > 0


= E

 θ̃
(
1 + aθ̃λ+1

)
1− δ

∫ max
(
0;log

(
1−δ

θ̃(1+aθ̃λ+1)

))
0

λe(1−λ)x dx |θ̃ > 0


= E

λθ̃
(
1 + aθ̃λ+1

)
(1− δ)(1− λ)

1

{
1− δ

θ̃(1 + aθ̃λ+1)
> 1

}
 θ̃

(
1 + aθ̃λ+1

)
1− δ

λ−1

− 1

 |θ̃ > 0


=

λ

(1− δ)(1− λ)

∫ θ−δ

0

x
(
1 + axλ+1

)
θ − δ

1
{
x
(
1 + axλ+1

)
< 1− δ

}(x
(
1 + axλ+1

)
(1− δ)eρ1

)λ−1

− 1

 dx

=
λ

(1− δ)(1− λ)(θ − δ)

∫ θ∗

0

x
(
1 + axλ+1

)(x
(
1 + axλ+1

)
1− δ

)λ−1

− 1

 dx

=
λ

(1− δ)(1− λ)(θ − δ)

{
1

(1− δ)λ−1

[
(1 + axλ+1)λ+1

a(λ+ 1)2

]θ∗

0

−
[
x2

2
+ a

xλ+3

λ+ 3

]θ∗

0

}

=
λ

(1− δ)(1− λ)(θ − δ)


(
1 + aθ∗

λ+1
)λ+1

− 1

a(λ+ 1)2(1− δ)λ−1
− θ∗

2

2
− a

θ∗
λ+3

λ+ 3

 . (19)

Combining this expression with Equation (13), we obtain:

π · θ − δ

θ
· (1− δ) ·R · P(γ ⩽ 1 | θ > δ) · E [(1− γ) | θ > δ, γ ⩽ 1]

= π · θ − δ

θ
· (1− δ) ·R ·

 θ∗

θ − δ
−

(
1 + aθ∗

λ+1
)λ+1

− 1

a(θ − δ)(1− δ)λ(λ+ 1)2

− λ

(1− δ)(1− λ)(θ − δ)


(
1 + aθ∗

λ+1
)λ+1

− 1

a(λ+ 1)2(1− δ)λ−1
− θ∗

2

2
− a

θ∗
λ+3

λ+ 3




=
π

θ
· (1− δ) ·R ·

θ∗ + λ

(1− δ)(1− λ)

(
θ∗

2

2
+ a

θ∗
λ+3

λ+ 3

)
−

(
1 + aθ∗

λ+1
)λ+1

− 1

a(1− δ)λ(λ+ 1)2
· 1

1− λ

(20)
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We are now able to derive the expected fund's value in a closed-form. Using Theorems

5 and 6, we obtain the following expression for Equation (13).

E(F ) = (1− π)F0 + π · δ
θ
·
(
F0 −

δ

2

)

+
π

θ
· (1− δ) ·R ·

θ∗ + λ

(1− δ)(1− λ)

(
θ∗

2

2
+ a

θ∗
λ+3

λ+ 3

)
−

(
1 + aθ∗

λ+1
)λ+1

− 1

a(1− δ)λ(λ+ 1)2
· 1

1− λ

 .(21)

where θ∗ = max
{
x ∈ [0, θ − δ] such that x(1 + axλ+1) ⩽ 1− δ

}
. Even though the

function is ill-de�ned for λ = 1, it is possible to calculate it in closed-form. It can be

easily shown the the fund's value for λ ̸= 1 converges when λ approaches 1. A continuity

argument can be applied without loss of generality. This proves Theorem 4.

To obtain the result of Equation (4), we set a = 0. We have:

E(F ) = (1− π)F0 + π · δ
θ
·
(
F0 −

δ

2

)
+

π

θ
· (1− δ) ·R ·

[
θ − δ +

λ

(1− δ)(1− λ)

(
(θ − δ)2

2

)
− (θ − δ)λ+1

(λ+ 1)(1− δ)λ
· 1

1− λ

]
= F0 + π ·

(
F0

(
δ

θ
− 1

)
− δ

θ
· δ
2

)
+

π

θ
· θ − δ

1− λ
· (1− δ) ·R ·

[
1− λ+

λ

1− δ

(
θ − δ

2

)
− (θ − δ)λ

(λ+ 1)(1− δ)λ

]
= F0 − π · δ

2

2θ
+

π

θ

[
F0(δ − θ) + (θ − δ)(1− δ)R

]
− π

θ
· θ − δ

1− λ
· (1− δ) ·R ·

[
1

λ+ 1

(
θ − δ

1− δ

)λ

− λ

1− δ

(
θ − δ

2

)]

= F0 − π · δ
(
1− δ

2θ

)
− π

θ
· θ − δ

1− λ
· (1− δ) ·R ·

[
1

λ+ 1

(
θ − δ

1− δ

)λ

− λ

1− δ

(
θ − δ

2

)]
.

Further setting θ = 1, we obtain:

E(F ) = F0 − π · δ
(
1− δ

2

)
− π · (1− δ)2

1− λ
·
[

1

λ+ 1
− λ

2

]
·R

= F0 − π · δ
(
1− δ

2

)
− π

2
· (1− δ)2 ·

[
1

λ+ 1
+ 1

]
·R

Indeed, one can check that 2
(1−λ)(λ+1)

− λ
(1−λ)

= 1
λ+1

+ 1.
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A.2.3 Closed-form cash solution in the benchmark case

We hereby assume that θ = 1 and a = 0. Based on the computations of Appendix A.2.2,

we have:

E(F ) = F0 − π · δ
(
1− δ

2

)
− π · (1− δ)2

1− λ
·
[

1

λ+ 1
− λ

2

]
·R

= 1 + (1− δ)(R− 1) +
π

2
·
[
(1− δ)2 − 1

]
− π · (1− δ)2

1− λ
·
[

1

λ+ 1
− λ

2

]
·R

= 1− π

2
+ (R− 1)(1− δ) + π ·

[
1

2
− 1

1− λ
·
(

1

λ+ 1
− λ

2

)
·R
]
(1− δ)2

Equivalently, when λ = 1, the expected fund's value can be written as a quadratic function

of δ by continuity. The program of the fund is to maximize its expected value under the

constraint that δ ∈ [0, 1]. We compute the derivative of this expectation. We trivially

have:

1− δ∗ =
1

π
· 1−R

1− 2
1−λ

·
(

1
λ+1

− λ
2

)
·R

=
1

π
· 1/R− 1

1/R− 2
1−λ

·
(

1
λ+1

− λ
2

)
=

1

π
·

(λ+ 1)
(
1− 1

R

)
(λ+ 1) 2

1−λ
·
(

1
λ+1

− λ
2

)
− (λ+ 1) 1

R

=
1

π
·

(λ+ 1)
(
1− 1

R

)
2

1−λ
− λ(λ+1)

1−λ
+ (λ+ 1)

(
1− 1

R

)
− (λ+ 1)

=
1

π
·

(λ+ 1)
(
1− 1

R

)
(λ+ 1)

(
1− 1

R

)
+ 2−λ(λ+1)

1−λ
− 1−λ2

1−λ

=
1

π
·

(λ+ 1)
(
1− 1

R

)
(λ+ 1)

(
1− 1

R

)
+ 1−λ2−λ+λ2

1−λ

=
1

π
·

(λ+ 1)
(
1− 1

R

)
(λ+ 1)

(
1− 1

R

)
+ 1

■

This proves Theorem 1.

The expected value is given by:

EF∗ = 1− π

2
− (R− 1)2

4π ·
[
1
2
− 1

1−λ
·
(

1
λ+1

− λ
2

)
·R
] (22)
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Thus, using the fact that 2
(1−λ)(λ+1)

− λ
(1−λ)

= 1
λ+1

+ 1

EF∗ = 1− π

2
− (R− 1)2

2π ·
[
1−

(
1

λ+1
+ 1
)
·R
]

= 1− π

2
− (R− 1)2

2π ·
[
1−R− R

λ+1

]

Given the optimal quantity of cash δ∗, the total default probability is given by (see

Equation (17)):

P(γ > 1) = π · 1− δ∗

λ+ 1

= π ·
1− 1

R

(λ+ 1)
(
1− 1

R

)
=

1

π
· 1

λ+ 1

This proves Theorem 2.

A.2.4 Risk premium analysis

We hereby assume that θ = 1, a = 0 and R = 1 + κ
λ+1−κ

. We can easily derive the

di�erent quantities. The fund's optimal cash decision is given by:

1− δ∗ =
1

π
·

(λ+ 1)
(
1− 1

R

)
(λ+ 1)

(
1− 1

R

)
+ 1

=
1

π
·

(λ+ 1) κ
λ+1

(λ+ 1) κ
λ+1

+ 1

=
1

π
·

κ
λ+1
κ+1
λ+1

=
1

π
· κ

κ+ 1

The expected fund value at the optimum is:

EF∗ = 1− π

2
+

(
κ

λ+1−κ

)2
2π ·

[
κ

λ+1−κ
+ 1

(λ+1−κ)(λ+1)

]
= 1− π

2
+

κ2

2π · (λ+ 1− κ)
· 1

κ+ κ+λ+1−κ
λ+1

= 1− π

2
+

κ2

2π · (λ+ 1− κ) (κ+ 1)
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and the liquidation probability is independent from R so it stays the same. This proves

Theorem 3. Putting κ = 1, we have:

1− δ∗ =
1

2π

EF∗ = 1− π

2
+

1

4 · π · λ

This proves Corollaries 1.1 and 2.1.
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